The advantages of passive supplemental dampers for performance enhancement of new and existing structures have been demonstrated extensively in the past. The big amount of experimental tests carried out all over the world on framed structures upgraded by energy dissipating bracing (EDB) systems based on hysteretic dampers (HDs), have shown their effectiveness in reducing seismic effects on buildings. The mechanical characteristics of the HDs in some cases may be different from those arising by the design procedure due to industrial tolerance or because of some damage suffered during previous earthquakes. In order to assess the robustness of this technique, in terms of capacity of seismic vibrations control even for significant changes in the mechanical characteristics of the EDB system respect to the design ones, in this paper experimental tests and parametric nonlinear time history analysis have been carried out changing the characteristics of the HD stiffness and strength. The experimental results refer to the shaking table tests performed at the Structural Laboratory of the University of Basilicata within a wide research program, named Joint Experimental Testing on Passive and semiActive Control Systems. The program has been completely funded by the Italian Department of Civil Protection within the activity of the Research Line 7 of the ReLUIS (Italian Network of University Laboratories of Earthquake Engineering) 2005–2008 project. A displacement-focused design procedure has been considered to evaluate the mechanical characteristics of the dissipating system, with the aim of limiting inter-storey drifts after frame yielding. From the experimental point of view, two design solutions have been tested for chevron braces equipped with HD, assuming the same stiffness but different values of both ductility demand and yield strength of the HDs. Moreover, parametric studies have been performed through numerical simulations. This paper provides an overview of the experimental set up and briefly summarizes the experimental outcomes and the comparison with the results of numerical nonlinear time history analysis. Moreover, the results of the parametric analysis for the assessment of the performances of the dissipating system in controlling structural response are presented.
Assessment of the performance of hysteretic energy dissipation bracing systems
DI CESARE, ANTONIO;PONZO, Felice Carlo;NIGRO, Domenico Salvatore
2014-01-01
Abstract
The advantages of passive supplemental dampers for performance enhancement of new and existing structures have been demonstrated extensively in the past. The big amount of experimental tests carried out all over the world on framed structures upgraded by energy dissipating bracing (EDB) systems based on hysteretic dampers (HDs), have shown their effectiveness in reducing seismic effects on buildings. The mechanical characteristics of the HDs in some cases may be different from those arising by the design procedure due to industrial tolerance or because of some damage suffered during previous earthquakes. In order to assess the robustness of this technique, in terms of capacity of seismic vibrations control even for significant changes in the mechanical characteristics of the EDB system respect to the design ones, in this paper experimental tests and parametric nonlinear time history analysis have been carried out changing the characteristics of the HD stiffness and strength. The experimental results refer to the shaking table tests performed at the Structural Laboratory of the University of Basilicata within a wide research program, named Joint Experimental Testing on Passive and semiActive Control Systems. The program has been completely funded by the Italian Department of Civil Protection within the activity of the Research Line 7 of the ReLUIS (Italian Network of University Laboratories of Earthquake Engineering) 2005–2008 project. A displacement-focused design procedure has been considered to evaluate the mechanical characteristics of the dissipating system, with the aim of limiting inter-storey drifts after frame yielding. From the experimental point of view, two design solutions have been tested for chevron braces equipped with HD, assuming the same stiffness but different values of both ductility demand and yield strength of the HDs. Moreover, parametric studies have been performed through numerical simulations. This paper provides an overview of the experimental set up and briefly summarizes the experimental outcomes and the comparison with the results of numerical nonlinear time history analysis. Moreover, the results of the parametric analysis for the assessment of the performances of the dissipating system in controlling structural response are presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.