A displacement-based design (DBD) procedure for buildings equipped with different seismic isolation systems is proposed. It has been derived from the Direct Dispaced-Based Design (DDBD) method recently developed by Priestley et al. [2007]. The key aspect of the proposed procedure is the definition of a target displacement profile for the structure. It is assigned by the designer to achieve given performance levels, expressed in terms of maximum displacement of the isolation system and maximum interstory drift. The proposed design procedure has been developed for four different idealized force-displacement relationships, which can describe the cyclic response of a wide variety of isolation systems, including: (i) Lead-Rubber Bearings (LRB); (ii) High- Damping Rubber Bearings (HDRB); (iii) Friction Pendulum Systems (FPS); and (iv) Combinations of lubricated Flat Sliding Bearings (FSB) with different re-centering and/or energy dissipating auxiliary devices. In this article, the background and implementation of the design procedure is presented first. It is followed by the results of validation studies based on nonlinear time-history analyses on different design configurations of base isolated buildings.

Direct Displacement-Based Design of Buildings with Different Seismic Isolation Systems

CARDONE, Donatello
;
2010-01-01

Abstract

A displacement-based design (DBD) procedure for buildings equipped with different seismic isolation systems is proposed. It has been derived from the Direct Dispaced-Based Design (DDBD) method recently developed by Priestley et al. [2007]. The key aspect of the proposed procedure is the definition of a target displacement profile for the structure. It is assigned by the designer to achieve given performance levels, expressed in terms of maximum displacement of the isolation system and maximum interstory drift. The proposed design procedure has been developed for four different idealized force-displacement relationships, which can describe the cyclic response of a wide variety of isolation systems, including: (i) Lead-Rubber Bearings (LRB); (ii) High- Damping Rubber Bearings (HDRB); (iii) Friction Pendulum Systems (FPS); and (iv) Combinations of lubricated Flat Sliding Bearings (FSB) with different re-centering and/or energy dissipating auxiliary devices. In this article, the background and implementation of the design procedure is presented first. It is followed by the results of validation studies based on nonlinear time-history analyses on different design configurations of base isolated buildings.
2010
File in questo prodotto:
File Dimensione Formato  
918160334.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/5222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? ND
social impact