Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA). The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability) and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.

On The Vulnerability of Water Limited Ecosystems to Climate Change

MANFREDA, Salvatore;
2013-01-01

Abstract

Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA). The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability) and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.
2013
File in questo prodotto:
File Dimensione Formato  
2013-Manfreda_Caylor_water.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/52034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact