In this paper we continue the study of a sequence of positive lin- ear operators which we have introduced in [9] and which are associated with a continuous selection of Borel measures on the unit interval. We show that the iterates of these operators converge to a Markov semigroup whose generator is a degenerate second-order elliptic differential operator on the unit interval. Some qualitative properties of the semigroup, or equivalently, of the solutions of the corresponding degenerate evolution problems, are also investigated.

Continuous selections of Borel measures, positive operators and degenerate evolution problems

LEONESSA, VITA
2007-01-01

Abstract

In this paper we continue the study of a sequence of positive lin- ear operators which we have introduced in [9] and which are associated with a continuous selection of Borel measures on the unit interval. We show that the iterates of these operators converge to a Markov semigroup whose generator is a degenerate second-order elliptic differential operator on the unit interval. Some qualitative properties of the semigroup, or equivalently, of the solutions of the corresponding degenerate evolution problems, are also investigated.
2007
File in questo prodotto:
File Dimensione Formato  
AltLeo2.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 177.26 kB
Formato Adobe PDF
177.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/5067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact