A rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (d18O and dD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75–88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient d18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.

Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy

PATERNOSTER, Michele
;
2008-01-01

Abstract

A rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (d18O and dD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75–88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient d18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.
2008
File in questo prodotto:
File Dimensione Formato  
2008 Paternoster et al. 2008.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 914.58 kB
Formato Adobe PDF
914.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/5046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 66
social impact