Three different isolation systems (IS’s) for bridges and viaducts are considered in the present study. All of them are made of steel-PTFE sliding bearings (SB) to support the weight of the deck and auxiliary devices, based on different technologies and materials (i.e. rubber, steel and shape memory alloys), to provide re-centring and/or additional energy dissipating capability. An extensive numerical investigation has been carried out in order to (i) assess the reliability of different design approaches, (ii) compare the response of different types of IS’s, (iii) evaluate the sensitivity of the structural response to friction variability due to bearing pressure, air temperature and state of lubrication and (iv) identify the response variations caused by changes in the ground motion, bridge and isolation characteristics. The nonlinear time-history analyses have been carried out using a simplified pier-deck model, where the pier is modelled as an elastic cantilever beam and the mass of the deck is connected to the pier through suitable nonlinear elements, simulating the behaviour of the IS. Both artificial and natural seismic excitations have been used in the nonlinear dynamic analyses.

Seismic Isolation of Bridges Using Isolation Systems based on Flat Sliding Bearings

CARDONE, Donatello;
2007

Abstract

Three different isolation systems (IS’s) for bridges and viaducts are considered in the present study. All of them are made of steel-PTFE sliding bearings (SB) to support the weight of the deck and auxiliary devices, based on different technologies and materials (i.e. rubber, steel and shape memory alloys), to provide re-centring and/or additional energy dissipating capability. An extensive numerical investigation has been carried out in order to (i) assess the reliability of different design approaches, (ii) compare the response of different types of IS’s, (iii) evaluate the sensitivity of the structural response to friction variability due to bearing pressure, air temperature and state of lubrication and (iv) identify the response variations caused by changes in the ground motion, bridge and isolation characteristics. The nonlinear time-history analyses have been carried out using a simplified pier-deck model, where the pier is modelled as an elastic cantilever beam and the mass of the deck is connected to the pier through suitable nonlinear elements, simulating the behaviour of the IS. Both artificial and natural seismic excitations have been used in the nonlinear dynamic analyses.
File in questo prodotto:
File Dimensione Formato  
Cardone2007b.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 810.32 kB
Formato Adobe PDF
810.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/4946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact