The effectiveness of seismic isolation in protecting structural and non-structural elements from damage has been assessed in an extensive programme of shaking-table tests, carried out on four identical 1/3.3-scale, two-dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber-based, (ii) steel-based, (iii) shape memory alloy (SMA)-based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base-isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non-structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking-table tests on similar fixed-base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper.
Shaking-table tests on reinforced concrete frames with different isolation systems
CARDONE, Donatello;PONZO, Felice Carlo
2007-01-01
Abstract
The effectiveness of seismic isolation in protecting structural and non-structural elements from damage has been assessed in an extensive programme of shaking-table tests, carried out on four identical 1/3.3-scale, two-dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber-based, (ii) steel-based, (iii) shape memory alloy (SMA)-based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base-isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non-structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking-table tests on similar fixed-base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper.File | Dimensione | Formato | |
---|---|---|---|
s1-ln1743606800907446-1939656818Hwf1155954227IdV-13672223381743606PDF_HI0001.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.