An in-house developed, 2D/3D unstructured CFD solver has been extended to deal with a mixture of thermally perfect gases in chemical non-equilibrium. The Euler equations have been coupled with a state-to-state kinetic model for argon plasma. The spatial discretization uses compact stencil Residual Distribution Schemes and shock waves can be modelled using either shock-capturing or shock-fitting. Promising results have been obtained using the shock-fitting approach for a 2D hypersonic flow past the fore-body of a circular cylinder.

A new computational technique for re-entry flow calculations based upon a shock-fitting technique for unstructured grids

PEPE, RAFFAELE;BONFIGLIOLI, Aldo;D'ANGOLA, Antonio;
2013-01-01

Abstract

An in-house developed, 2D/3D unstructured CFD solver has been extended to deal with a mixture of thermally perfect gases in chemical non-equilibrium. The Euler equations have been coupled with a state-to-state kinetic model for argon plasma. The spatial discretization uses compact stencil Residual Distribution Schemes and shock waves can be modelled using either shock-capturing or shock-fitting. Promising results have been obtained using the shock-fitting approach for a 2D hypersonic flow past the fore-body of a circular cylinder.
File in questo prodotto:
File Dimensione Formato  
AA-1-2013-51.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 973.09 kB
Formato Adobe PDF
973.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/48234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact