Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, acquired hematopoietic disorder characterized by a phosphatidylinositol (PI) glycan-A gene mutation, which impairs the synthesis of the glycosyl-PI (GPI) anchor, thus causing the absence of all GPI-linked proteins on the membrane of the clonal-defective cells. The presence of a consistent GPI-defective monocyte compartment is a common feature in PNH patients. To investigate the functional behavior of this population, we analyzed its in vitro differentiation ability toward functional dendritic cells (DCs). Our data indicate that GPI-defective monocytes from PNH patients are unable to undergo full DC differentiation in vitro after granulocyte macrophage-colony stimulating factor and recombinant interleukin (IL)-4 treatment. In this context, the GPI-defective DC population shows mannose receptor expression, high levels of the CD86 molecule, and impaired CD1a up-regulation. The analysis of lipopolysaccharide and CD40-dependent, functional pathways in these DCs revealed a strong decrease in tumor necrosis factor alpha and IL-12 production. Finally, GPI-defective DCs showed a severe impairment in delivering accessory signals for T cell receptor-dependent T cell proliferation.

GPI-defective monocytes from paroxysmal nocturnal hemoglobinuria patients show impaired in vitro dendritic cell differentiation.

TERRAZZANO, Giuseppe;
2004-01-01

Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, acquired hematopoietic disorder characterized by a phosphatidylinositol (PI) glycan-A gene mutation, which impairs the synthesis of the glycosyl-PI (GPI) anchor, thus causing the absence of all GPI-linked proteins on the membrane of the clonal-defective cells. The presence of a consistent GPI-defective monocyte compartment is a common feature in PNH patients. To investigate the functional behavior of this population, we analyzed its in vitro differentiation ability toward functional dendritic cells (DCs). Our data indicate that GPI-defective monocytes from PNH patients are unable to undergo full DC differentiation in vitro after granulocyte macrophage-colony stimulating factor and recombinant interleukin (IL)-4 treatment. In this context, the GPI-defective DC population shows mannose receptor expression, high levels of the CD86 molecule, and impaired CD1a up-regulation. The analysis of lipopolysaccharide and CD40-dependent, functional pathways in these DCs revealed a strong decrease in tumor necrosis factor alpha and IL-12 production. Finally, GPI-defective DCs showed a severe impairment in delivering accessory signals for T cell receptor-dependent T cell proliferation.
2004
File in questo prodotto:
File Dimensione Formato  
JLB04.PDF

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 126.4 kB
Formato Adobe PDF
126.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/4764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact