We introduce a new method to describe tactical (de-)compositions of symmetric configurations via block (0,1)-matrices with constant row and column sum having circulant blocks. This method allows us to prove the existence of an infinite class of symmetric configurations of type $(2p^2)_{p+s }$ where p is any prime and s≤t is a positive integer such that t−1 is the greatest prime power with $t^2−t+1≤p$. In particular, we obtain a new configuration $98_{10}$.

Tactical (de-)compositions of symmetric configurations

FUNK, Martin;LABBATE, Domenico;
2009

Abstract

We introduce a new method to describe tactical (de-)compositions of symmetric configurations via block (0,1)-matrices with constant row and column sum having circulant blocks. This method allows us to prove the existence of an infinite class of symmetric configurations of type $(2p^2)_{p+s }$ where p is any prime and s≤t is a positive integer such that t−1 is the greatest prime power with $t^2−t+1≤p$. In particular, we obtain a new configuration $98_{10}$.
File in questo prodotto:
File Dimensione Formato  
DISC7469-tact-decomp.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 509.54 kB
Formato Adobe PDF
509.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/437
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact