We introduce a new method to describe tactical (de-)compositions of symmetric configurations via block (0,1)-matrices with constant row and column sum having circulant blocks. This method allows us to prove the existence of an infinite class of symmetric configurations of type $(2p^2)_{p+s }$ where p is any prime and s≤t is a positive integer such that t−1 is the greatest prime power with $t^2−t+1≤p$. In particular, we obtain a new configuration $98_{10}$.
Tactical (de-)compositions of symmetric configurations
FUNK, Martin;LABBATE, Domenico;
2009-01-01
Abstract
We introduce a new method to describe tactical (de-)compositions of symmetric configurations via block (0,1)-matrices with constant row and column sum having circulant blocks. This method allows us to prove the existence of an infinite class of symmetric configurations of type $(2p^2)_{p+s }$ where p is any prime and s≤t is a positive integer such that t−1 is the greatest prime power with $t^2−t+1≤p$. In particular, we obtain a new configuration $98_{10}$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DISC7469-tact-decomp.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
509.54 kB
Formato
Adobe PDF
|
509.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.