Let M be a Minkowski (incidence) plane and let Π(M) be the group of so-called`free' projectivities of M. Then M is Miquelian if Π(M) satisfies condition (P_5), i.e., every free projectivity with 5 fixed points is the indentity. But first a lemma is proved, which holds also in Möbius and Laguerre (incidence) planes: If Π(M) satisfies (P_5), then every affine derivation of M is Pappian.

Der Satz von v. Staudt-Schleiermacher in Minkowski-Ebenen

FUNK, Martin
1982-01-01

Abstract

Let M be a Minkowski (incidence) plane and let Π(M) be the group of so-called`free' projectivities of M. Then M is Miquelian if Π(M) satisfies condition (P_5), i.e., every free projectivity with 5 fixed points is the indentity. But first a lemma is proved, which holds also in Möbius and Laguerre (incidence) planes: If Π(M) satisfies (P_5), then every affine derivation of M is Pappian.
1982
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact