We determine all point-sets of minimum size in $\mathrm{PG}(2,q)$, $q$ odd that meet every external line to a conic in $\mathrm{PG}(2,q)$. The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of $\mathrm{PGL}(2,q)$.

Blocking sets of external lines to a conic in PG(2,q), q odd

KORCHMAROS, Gabor
2006-01-01

Abstract

We determine all point-sets of minimum size in $\mathrm{PG}(2,q)$, $q$ odd that meet every external line to a conic in $\mathrm{PG}(2,q)$. The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of $\mathrm{PGL}(2,q)$.
2006
File in questo prodotto:
File Dimensione Formato  
117aakg.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 232.72 kB
Formato Adobe PDF
232.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/42
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact