We determine all point-sets of minimum size in $\mathrm{PG}(2,q)$, $q$ odd that meet every external line to a conic in $\mathrm{PG}(2,q)$. The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of $\mathrm{PGL}(2,q)$.
Blocking sets of external lines to a conic in PG(2,q), q odd
KORCHMAROS, Gabor
2006-01-01
Abstract
We determine all point-sets of minimum size in $\mathrm{PG}(2,q)$, $q$ odd that meet every external line to a conic in $\mathrm{PG}(2,q)$. The proof uses a result on the linear system of polynomials vanishing at every internal point to the conic and a corollary to the classification theorem of all subgroups of $\mathrm{PGL}(2,q)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
117aakg.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
232.72 kB
Formato
Adobe PDF
|
232.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.