Salmon calcitonin (sCT) forms an amphipathic helix in the region 9-19, with the C-terminal decapeptide interacting with the helix (Amodeo, P., Motta, A., Strazzullo, G., Castiglione Morelli, M. A. (1999) J. Biomol. NMR 13, 161-174). To uncover the structural requirements for the hormone bioactivity, we investigated several sCT analogs. They were designed so as to alter the length of the central helix by removal and/or replacement of flanking residues and by selectively mutating or deleting residues inside the helix. The helix content was assessed by circular dichroism and NMR spectroscopies; the receptor binding affinity in human breast cancer cell line T 47D and the in vivo hypocalcemic activity were also evaluated. In particular, by NMR spectroscopy and molecular dynamics calculations we studied Leu(23),Ala(24)-sCT in which Pro(23) and Arg(24) were replaced by helix inducing residues. Compared with sCT, it assumes a longer amphipathic alpha-helix, with decreased binding affinity and one-fifth of the hypocalcemic activity, therefore supporting the idea of a relationship between a definite helix length and bioactivity. From the analysis of other sCT mutants, we inferred that the correct helix length is located in the 9-19 region and requires long range interactions and the presence of specific regions of residues within the sequence for high binding affinity and hypocalcemic activity. Taken together, the structural and biological data identify well defined structural parameters of the helix for sCT bioactivity.

Structural determinants of salmon calcitonin bioactivity -the role of the leu-based amphipatic alfa-helix

CASTIGLIONE MORELLI, Maria Antonietta;
2006-01-01

Abstract

Salmon calcitonin (sCT) forms an amphipathic helix in the region 9-19, with the C-terminal decapeptide interacting with the helix (Amodeo, P., Motta, A., Strazzullo, G., Castiglione Morelli, M. A. (1999) J. Biomol. NMR 13, 161-174). To uncover the structural requirements for the hormone bioactivity, we investigated several sCT analogs. They were designed so as to alter the length of the central helix by removal and/or replacement of flanking residues and by selectively mutating or deleting residues inside the helix. The helix content was assessed by circular dichroism and NMR spectroscopies; the receptor binding affinity in human breast cancer cell line T 47D and the in vivo hypocalcemic activity were also evaluated. In particular, by NMR spectroscopy and molecular dynamics calculations we studied Leu(23),Ala(24)-sCT in which Pro(23) and Arg(24) were replaced by helix inducing residues. Compared with sCT, it assumes a longer amphipathic alpha-helix, with decreased binding affinity and one-fifth of the hypocalcemic activity, therefore supporting the idea of a relationship between a definite helix length and bioactivity. From the analysis of other sCT mutants, we inferred that the correct helix length is located in the 9-19 region and requires long range interactions and the presence of specific regions of residues within the sequence for high binding affinity and hypocalcemic activity. Taken together, the structural and biological data identify well defined structural parameters of the helix for sCT bioactivity.
2006
File in questo prodotto:
File Dimensione Formato  
J Biol Chem_2006.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 392.52 kB
Formato Adobe PDF
392.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/4158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 55
social impact