The Heawood graph and the complete bipartite graph $K_{3,3}$ have the property that all of their 2-factors are hamiltonian cycles. We call such graphs 2-factor hamiltonian. In this paper, we study k-regular bipartite graphs with the apparently more general property that all their 2-factors are isomorphic. We prove that if G is a k-regular bipartite graph and all 2-factors of G are isomorphic then $k \le 3$.

Regular bipartite graphs with all 2-factors isomorphic

FUNK, Martin;LABBATE, Domenico;
2004

Abstract

The Heawood graph and the complete bipartite graph $K_{3,3}$ have the property that all of their 2-factors are hamiltonian cycles. We call such graphs 2-factor hamiltonian. In this paper, we study k-regular bipartite graphs with the apparently more general property that all their 2-factors are isomorphic. We prove that if G is a k-regular bipartite graph and all 2-factors of G are isomorphic then $k \le 3$.
File in questo prodotto:
File Dimensione Formato  
BU4JCTB.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 237.34 kB
Formato Adobe PDF
237.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/415
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact