In order to approximate functions defined on (−1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted L^p metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation.

Lagrange interpolation with exponential weights on (-1,1)

MASTROIANNI, Giuseppe Maria;NOTARANGELO, INCORONATA
2013-01-01

Abstract

In order to approximate functions defined on (−1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted L^p metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation.
2013
File in questo prodotto:
File Dimensione Formato  
MastroianniNotarangeloJAT2013.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 318.38 kB
Formato Adobe PDF
318.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/40237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact