In order to approximate functions defined on (−1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted L^p metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation.
Lagrange interpolation with exponential weights on (-1,1)
MASTROIANNI, Giuseppe Maria;NOTARANGELO, INCORONATA
2013-01-01
Abstract
In order to approximate functions defined on (−1, 1) with exponential growth for |x| → 1, we consider interpolation processes based on the zeros of orthonormal polynomials with respect to exponential weights. Convergence results and error estimates in weighted L^p metric and uniform metric are given. In particular, in some function spaces, the related interpolating polynomials behave essentially like the polynomial of best approximation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MastroianniNotarangeloJAT2013.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
318.38 kB
Formato
Adobe PDF
|
318.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.