Let L be a D-lattice, i.e. a lattice ordered effect algebra, and let BV be the Banach space of all real-valued functions of bounded variation on L (vanishing at 0) endowed with the variation norm. We prove the existence of a continuous Aumann–Shapley value φ on NA, the subspace of BV spanned by all functions of the form f°µ, where µ:L->[0,1] is a non-atomic σ-additive modular measure and f:[0,1]->R is of bounded variation and continuous at 0 and at 1

On the Aumann–Shapley value

VITOLO, Paolo
2008-01-01

Abstract

Let L be a D-lattice, i.e. a lattice ordered effect algebra, and let BV be the Banach space of all real-valued functions of bounded variation on L (vanishing at 0) endowed with the variation norm. We prove the existence of a continuous Aumann–Shapley value φ on NA, the subspace of BV spanned by all functions of the form f°µ, where µ:L->[0,1] is a non-atomic σ-additive modular measure and f:[0,1]->R is of bounded variation and continuous at 0 and at 1
2008
File in questo prodotto:
File Dimensione Formato  
BCV_Aumann.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 303.21 kB
Formato Adobe PDF
303.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact