It is known that if a topological space X is locally compact then the Kuratowski convergence on the closed subsets of X is topological. We show that the converse is true, provided that X is quasi-sober. We also show that the Kuratowski convergence is topological if and only if it is pretopological.

When is Kuratowski convergence topological?

VITOLO, Paolo
1998-01-01

Abstract

It is known that if a topological space X is locally compact then the Kuratowski convergence on the closed subsets of X is topological. We show that the converse is true, provided that X is quasi-sober. We also show that the Kuratowski convergence is topological if and only if it is pretopological.
1998
File in questo prodotto:
File Dimensione Formato  
KurCon.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 183.85 kB
Formato Adobe PDF
183.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact