A subgroup $H$ of a group $G$ is said to be inert if $H\cap H^g$ has finite index in both $H$ and $H^g$ for any $g\in G$. We study hyper-(abelian or finite) groups in which subnormal subgroups are inertial.
On groups whose subnormal subgroups are inert
RINAURO, Silvana
2012-01-01
Abstract
A subgroup $H$ of a group $G$ is said to be inert if $H\cap H^g$ has finite index in both $H$ and $H^g$ for any $g\in G$. We study hyper-(abelian or finite) groups in which subnormal subgroups are inertial.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
preprint_Tstar_nov17.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
219.91 kB
Formato
Adobe PDF
|
219.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.