A subgroup $H$ of a group $G$ is said to be inert if $H\cap H^g$ has finite index in both $H$ and $H^g$ for any $g\in G$. We study hyper-(abelian or finite) groups in which subnormal subgroups are inertial.

On groups whose subnormal subgroups are inert

RINAURO, Silvana
2012-01-01

Abstract

A subgroup $H$ of a group $G$ is said to be inert if $H\cap H^g$ has finite index in both $H$ and $H^g$ for any $g\in G$. We study hyper-(abelian or finite) groups in which subnormal subgroups are inertial.
2012
File in questo prodotto:
File Dimensione Formato  
preprint_Tstar_nov17.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 219.91 kB
Formato Adobe PDF
219.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/36690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact