On groups whose subnormal subgroups are inert *

Ulderico Dardano † - Silvana Rinauro ‡

Abstract. A subgroup H of a group G is said to be inert if $H \cap H^g$ has finite index in both H and H^g for any $g \in G$. We study hyper-(abelian or finite) groups in which subnormal subgroups are inertial. Keywords: commensurable, inert, subnormal subgroup.

1 Introduction

The class \mathbf{T} of groups in which subnormal subgroups are normal and its generalizations received much attention in the literature. In particular classes \mathbf{T}_* and \mathbf{T}^* of groups G in which subnormal subgroups H have property $|H : H_G| < \infty$ and $|H^G : H| < \infty$ (resp.) were studied in [6] and [3] resp. To see those classes in the same framework we consider the class \mathbf{T}_* in which subnormal subgroups are cn, that is commensurable to a normal subgroup. Here two subgroups X and Y of a group are told commensurable iff the index of $X \cap Y$ in both X and Y is finite. Commensurability is an equivalence relation that we denote by \sim . Clarly cn-subgroups are *inert*, that is commensurable to their conjugates. Thus we consider the class $\tilde{\mathbf{T}}$ of groups whose subnormal subgroups are *inert*.

A group whose all subgroups are inert is said *totally inertial* (or just *inertial*). Such groups also received attention in the context of locally finite groups (see [1] for example). In the context of generalized soluble groups, a description of a class of groups whose subgroups are strongly inertial is

^{*}These results have been featured in invited talks at Dept. of Mathematics, Univ. of Firenze, I, July 2nd, 2012.

[†]dardano@unina.it

[‡]silvana.rinauro@unibas.it

given in [5] while a characterization of inertial groups with some finiteness conditions was given by D. Robinson in [8].

Theorem A of [8] states that if G is a hyper-(abelian or finite) inertial group, then it is abelian or dihedral, provided it has no non-trivial periodic normal subgroups. Here we obtain a similar characterization of $\tilde{\mathbf{T}}$ -groups by substituting the class of dihedral by that of semi-dihedral groups, see Theorem \tilde{A} .

In Theorem B of [8] it is shown that a finitely generated hyper-(abelian or finite) group is inertial iff it has a finite index torsion-free normal subgroup in which elements of G induce power automorphisms. In our Theorem \tilde{B} we show that a corresponding statement holds for $\tilde{\mathbf{T}}$ -groups.

For terminology, notation and basic facts we refer to [8] and [7]

2 Main results

Let us give examples of **T**-groups.

Lemma 1 If $G_1 \triangleleft G_0 \triangleleft G$, with G_1 and G/G_0 finite, and if any subnormal subgroup of G_0/G_1 is inert (resp. cn) in G/G_1 , then G is $\tilde{\mathbf{T}}$ (resp. $\mathbf{T}*$).

An automorphism of a group is said to be *inertial automorphism* iff it maps subgroups to commensurable subgroups (setwise). Inertial automorphisms fill a subgroup $\mathcal{I}\operatorname{Aut}(G)$ of $\operatorname{Aut}(G)$. Inertial automorphisms of abelian groups A have been studied in [4]. In the case A a torsion-free abelian group they are *rational power automorphisms*, according to the following definition. Recall that if $0 \neq n, m \in \mathbb{Z}$, for each $a \in A$, there is at most one $b \in A$ such that

 $(*) \qquad b^n = a^m$

If such a unique *b* exists, we write $b = a^{\frac{m}{n}}$. Thus if m, n are coprime and $A = A^m = A^n$, then (*) defines an automorphism $a \mapsto b$ that we call the rational power automorphism $q = \frac{m}{n}$. It is *inertial iff either* $\frac{m}{n} = \pm 1$ or A has finite rank. Therefore, when A is torsion-free abelian, $\mathcal{I}Aut(A)$ is isomorphic to a subgroup of \mathbb{Q}^* , the multiplicative group of the rationals.

We introduce now a class of **ST**-groups.

Thus elements of K induce *rational power* automorphisms. If all elements of K induce power automorphism, then G is abelian or dihedral, and it is an inertial group. Otherwhise, by Theorem 2 of [4], A has finite rank.

Proposition Let A be a torsion-free abelian normal subgroup of a group G. i) G is semidihedral on A iff $A = C_G(A)$ and G acts on A by means of inertial automorphisms. In this case A = Fit(G)

ii) If G is semidihedral on A and G_0 is a non-abelian subgroup of finite index in G, then G_0 is semidihedral on $A_0 = A \cap G_0$.

Proof. (i) Assume G semidihedral on A. Since non-trivial inertial automorphisms of A are fixed-point-free, then $A = C_G(A) = Fit(G)$. Conversely, if $A = C_G(A)$, for any $x \in G \setminus A$, the subgroup $N := \langle x, A \rangle = A \rtimes \langle x \rangle$ has trivial centre. By 11.4.21 of [7], up to equivalence there exists a unique extension of N by Q = G/N with coupling the natural omomorphism $Q \to OutN$, and so G is isomorphic to the subgroup $A \rtimes G/A$ of the holomorph of A.

(*ii*) Every element of $G_0 \setminus A_0$ acts fixed-point-free on A_0 and so $C_{G_0}(A_0) = A_0$. Hence G_0 is semidihedral on A_0 by (*i*).

Denote by $\mathbf{S}\tilde{\mathbf{T}}$ the class of hyper-(abelian or finite) $\tilde{\mathbf{T}}$ -groups.

Theorem A A group G without non-trivial periodic normal subgroups is a \tilde{ST} -group iff it is semidihedral on a torsion-free abelian subgroup.

Proof. Suppose G is a ST-group. By Corollary 5.1 of [8], any torsion-free nilpotent normal subgroup N of G is abelian. Thus A = Fit(G) is abelian and by Theorem 2 in [4] it follows that $G/C_G(A)$ is abelian, too. Suppose, by contradiction, that $A \neq C := C_G(A)$. Since G is hyper-(abelian or finite), there exists a G-invariant subgroup U of C properly containing A and such that U/A is finite or abelian. If U/A is abelian, then U is nilpotent and so U = A, a contradiction. Then U/A is finite, so U is central-by-finite and U' is finite. Then U' = 1, a contradiction again. Hence A = C and G is semidihedral on A by Proposition 2(i).

Conversely, let G be semidihedral on A, $H \not\leq A$ a subnormal subgroup of G with defect i. If $|H/(A \cap H)| = |AH : A|$ is finite, then $|H^G : H|$ is finite as G/A is abelian, so H is inert in G. Otherwise by Theorem 2 in [4], there is $g \in H \setminus A$ acting on A as a non-power rational power automorphism and A has finite rank. Say g = q, with $q \in \mathbb{Q}^* \setminus \{1, -1\}$. Hence $H \geq [A_{ij} g] = A^{(q-1)^i}$.

Therefore $|A/(A \cap H)| = |AH : H|$ is finite and again H is inert in G. Therefore G is a \mathbf{ST} -group.

Theorem B Let G be a finitely generated group. The following conditions are equivalent:

i) G is a **ST**-group;

ii) G has a semidihedral normal subgroup with finite index G_0 such that G acts by means of rational power automorphisms on $A_0 = Fit(G_0)$ and power automorphisms on G_0/A_0 ;

iii) G has a finite normal subgroup F such that G/F is semidihedral.

Proof. $(i) \Rightarrow (ii)$ As finitely generated semidihedral groups are finitely presented, we may assume that our claim holds for every proper quotient of G. By Theorem \tilde{A} , we may also assume that G has a periodic normal nontrivial subgroup N, which is either finite or an infinite elementary abelian p-group. In the latter case by [4] N has a subgroup of finite index on which elements of G act as power automorphisms and so N contains is proper normal subgroup K of G with N/K finite. So we may assume that N is finite with order say n > 1. Then there are normal subgroups in G

$$(*) \quad N \le A_1 \le G_1 \le G$$

such that $A_1 = C_{G_1}(A_1/N)$, G_1 has finite index in G and A_1/N and G_1/A_1 are torsion-free abelian. If we intersect every subgroup of the chain (*) with $C := C_G(N)$, we obtain the chain $N_2 \leq A_2 \leq G_2 \leq C$, where G_2 has finite index in G and A_2/N_2 and G_2/A_2 are torsion-free abelian. If $G_2 = A_2$, we get the claim by taking $G_0 := (A_2)^n$, which has finite index in the finitely generated group G and is torsion-free abelian since A_2 is nilpotent of class 2. Otherwise, let us check that $A_2 = C_{G_2}(A_2/N_2)$. Suppose that $x \in G_2$ and $[x, A_2] \leq N_2$. Since $[x, A_2N] \leq N$, we have that x centralizes a non-trivial subgroup of A_1/N . On the other hand every element of G_1 induces on A_1/N either a fixed-point free automorphism or the identity map. Thus $x \in A_1$ and so $x \in A_1 \cap C = A_2$ and $A_2 = C_{G_2}(A_2/N_2)$.

Let again $A_0 := (A_2)^n$, which is abelian and torsion-free. As G_2/A_0 is finitely generated and finite-by-abelian, it has an abelian normal torsion-free subgroup of finite index, say G_0/A_0 . Finally, if $x \in G_0$ and $[x, A_0] = 1$, then x centralizes a non-trivial subgroup of A_2/N_2 and so $x \in A_2$. Since A_2/A_0 is periodic, then $A_2 \cap G_0 = A_0$, and we get $C_{G_0}(A_0) = A_0$ and G_0 is semidihedral and $A_0 = Fit(G_0)$. Finally, as elements of G acts as inertial automorphisms of the abelian torsion-free group A_0 , they are rational power on it, and as periodic inertial automorphisms of the abelian torsion-free group G_0/A_0 , they are power on it, by Theorem 2 of [4].

 $(ii) \Rightarrow (i)$ Let first $H \leq G_0$ be a subnormal subgroup of G with defect iand $H \not\leq A_0$. Suppose $|H/(A_0 \cap H)| = |A_0H : A_0|$ is finite. Since elements of G act as power automorphisms on G_0/A_0 , then $|H^G : H|$ is finite and His inert in G. Otherwise by Theorem 2 in [4], there is $g \in H \setminus A$ acting on A_0 as a non-power rational power automorphism, say g = q, with $q \in$ $\mathbb{Q}^* \setminus \{1, -1\}$ and A_0 has finite rank. Hence $H \geq [A_{0,i}g] = A_0^{(q-1)^i}$. Therefore $|A_0/(A_0 \cap H)| = |A_0H : H|$ is finite and again H is inert in G. Finally if His any subnormal subgroup of G, it is commensurable to $H \cap G_0$, which is inert by the above.

 $(ii) \Rightarrow (iii)$ Let $C := C_G(A_0)$. Since $C \cap G_0 = A_0$, we have that C/A_0 is finite. It follows that C' and F/C' := tor(C/C') are finite as well. Thus F is finite and G/F is semidihedral on C/F, since if $x \in C_G(C/F)$ then $[x, A_0] \leq A_0 \cap F = 1$. $(iii) \Rightarrow (i)$ This is trivial.

3 Groups in which being commensurable to a normal subgroup is a transitive relation

If we define H an G (almost normal) iff $|H^G : H| < \infty$ then \mathbf{T}^* -groups are groups in which: * $\forall H \leq K \leq G$, HanK and $KanG \Rightarrow HanG$; (see [3]) similarly, if we define H cf G (core finite) iff $|H : H_G| < \infty$ then \mathbf{T}_* -groups are groups in which: * $\forall H \leq K \leq G$, HcfK and $KcfG \Rightarrow HcfG$; (see [6])

For **T***-groups the picture is similar as we see in next Proposition. Recall that $H \operatorname{sn} G$ means H is subnormal in G, that is there is $i \in \mathbb{N}$ such that $[H_{i}, G] \leq H$.

Proposition 1 For a group G the following conditions are equivalent: i) $\forall H \leq G, H \operatorname{sn} G \Rightarrow H \operatorname{cn} G;$ ii) $\forall H \leq K \leq G, H \operatorname{cn} K \text{ and } K \operatorname{cn} G \Rightarrow H \operatorname{cn} G.$

Proof. $(i) \Rightarrow (ii)$ Suppose there are subgroups H_1 and K_1 such that $H \sim H_1 \triangleleft K \sim K_1 \triangleleft G$. The subgroup $K_2 := (K \cap K_1)_{KK_1}$ has finite index in KK_1 and so $H \cap K_2$ has finite index in H. Hence $H \sim H \cap K_2 \sim H_1 \cap K_2$. On the other hand $H_1 \cap K_2 \triangleleft K_2 \triangleleft K_1 \triangleleft G$. Hence HcnG and (ii) holds.

The converse is obvious.

Corollary 1 For a finitely generated hyper(finite-or-abelian) group G the following are equivalent:

i) G is a \mathbf{T} *-group

ii) G acts by means of power automorphisms on a finite index abelian normal subgroup A.

iii) $\forall H \leq G$, $H \operatorname{sn} G$ implies H^G/H_G is finite, that is H is both an and cf.

Clearly the A of (ii) can be taken to be free abelian of finite rank and G induces on A either the identity or the inversion map.

Proof. If (i) holds, then by Theorem B* there is a normal series $A \leq G_0 \leq G$ such that G/G_0 is finite and G acts by means of inertial automorphisms on the torsion-free subgroup $A = C_{G_0}(A)$. Since $H \operatorname{cn} G$ for every subgroup of A, G induces on A either the identity or the inversion map and $|G_1/C_{G_1(A)}| \leq 2$. Thus G/A is finite and (ii) holds.

If (*ii*) holds and *H* is any subgroup of *G*, it is plain that *H* cnG as *H* is finite mod $(A \cap H) \lhd G$. If [A, H] = 1 then *H* has finitely many conjugates, as $A \leq C_G(H)$. Thus $H^G/(A \cap H)$ is finite by Dietzman Lemma and so H^G/H_G is finite. Otherwise, if *H* is subnormal with defect *i*, then $H \geq [A_{,i} H] = A^{2^i}$, whence $|G:H| \leq |G/A^{2^i}|$ is finite and (*iii*) holds.

It is trivial that (iii) implies (i).

References

- V.V. Belayev, M. Kuzucuoğlu and E. Seckin, Totally inert groups, *Rend. Sem. Mat. Univ. Padova* 102 (1999), 151-156.
- [2] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups, *Rend. Sem. Mat. Univ. Padova* 81 (1989), 107-149.
- [3] C. Casolo, Subgroups of Finite Index in Generalized T-groups, Rend. Sem. Mat. Univ. Padova 80 (1988), 265-277.
- [4] U. Dardano and S. Rinauro, Inertial automorphisms of an abelian group, Rend. Sem. Mat. Univ. Padova 127 (2012), 213-233.
- [5] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Strongly inertial groups, to appear.
- [6] S. Franciosi, F. de Giovanni and M.L. Newell, Groups whose subnormal subgroups are normal-by-finite, *Comm. Alg.* 23(14) (1995), 5483-5497.
- [7] D.J.S. Robinson, "A Course in the Theory of Groups", Springer V., Berlin, 1982.
- [8] D.J.S. Robinson, On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova 115 (2006), 137-159.

Ulderico Dardano, Dipartimento di Matematica e Applicazioni "R.Caccioppoli", Università di Napoli "Federico II", Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy. dardano@unina.it

Silvana Rinauro, Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Via dell'Ateneo Lucano 10 - Contrada Macchia Romana, I-85100 Potenza, Italy. silvana.rinauro@unibas.it