A better understanding of genesis and palaeoenvironmental setting of the Scisti silicei Formation (Lagonegro units, southern Italy) was achieved by means of geochemical analysis integrated with new stratigraphic information. Data show that major and trace element geochemistry of ancient clay-rich beds and banded cherts add new insights into the Mesozoic evolution of the Lagonegro basin. Sedimentary contributions to Jurassic shales sampled during this study were mainly derived from two major sources: (i) a dominant terrigenous fine-grained component, having affinity with average upper continental crust that had not undergone intense weathering and (ii) biogenic siliceous material. The latter component occurs in clay-rich layers from the ‘‘basal member’’ of the Scisti silicei Formation. Composition varies up section and accounts for changes in the detrital supply due to bathymetric oscillations. The compositional variations from the basal to the overlying member are consistent with a distal source passing in time to a more ‘‘proximal’’ source, as indicated by sharp changes in the concentrations of detrital elements (Ti, Zr and Nb). It is likely that increased detrital input occurred through turbidity current deposition. Finally, the chemical features of the clay-rich layers from the upper cherty portion of the studied succession imply a progressive deepening of the basin. The lack of any mafic and hydrothermal contributions in the Jurassic shales as well as the continental nature of detrital input suggests that the Lagonegro basin was located between two carbonate platforms, in accordance with the classical restoration of the African–Apulian palaeomargin. Thus, the basin acted as a preferential sink connected to the African cratonic areas through a southern entry point.

Geology and geochemistry of the Jurassic pelagic sediments from the Lagonegro Units, southern Apennines, Italy

MONGELLI, Giovanni;SCHIATTARELLA, Marcello
2002-01-01

Abstract

A better understanding of genesis and palaeoenvironmental setting of the Scisti silicei Formation (Lagonegro units, southern Italy) was achieved by means of geochemical analysis integrated with new stratigraphic information. Data show that major and trace element geochemistry of ancient clay-rich beds and banded cherts add new insights into the Mesozoic evolution of the Lagonegro basin. Sedimentary contributions to Jurassic shales sampled during this study were mainly derived from two major sources: (i) a dominant terrigenous fine-grained component, having affinity with average upper continental crust that had not undergone intense weathering and (ii) biogenic siliceous material. The latter component occurs in clay-rich layers from the ‘‘basal member’’ of the Scisti silicei Formation. Composition varies up section and accounts for changes in the detrital supply due to bathymetric oscillations. The compositional variations from the basal to the overlying member are consistent with a distal source passing in time to a more ‘‘proximal’’ source, as indicated by sharp changes in the concentrations of detrital elements (Ti, Zr and Nb). It is likely that increased detrital input occurred through turbidity current deposition. Finally, the chemical features of the clay-rich layers from the upper cherty portion of the studied succession imply a progressive deepening of the basin. The lack of any mafic and hydrothermal contributions in the Jurassic shales as well as the continental nature of detrital input suggests that the Lagonegro basin was located between two carbonate platforms, in accordance with the classical restoration of the African–Apulian palaeomargin. Thus, the basin acted as a preferential sink connected to the African cratonic areas through a southern entry point.
2002
File in questo prodotto:
File Dimensione Formato  
SedGeol2002.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 768.8 kB
Formato Adobe PDF
768.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact