We construct an infinite family of transitive $42$-arcs in $\mathrm{PG}(3,q^{2})$, with $q=p^{n}\geq 29$ and $q\equiv 1\pmod{7}$, under the action of the group $\mathrm{PSL}(2,7)$ in its representation as a subgroup of $\mathrm{PGL}(4,q)$. Further, we study the case $q=29$ in detail with computer assistance. For $q=29$ these $42$-arcs turn out to be complete.

Transitive $\mathrm{PSL}(2,7)$-invariant $42$-arcs in $3$-dimensional projective spaces

SONNINO, Angelo
2014-01-01

Abstract

We construct an infinite family of transitive $42$-arcs in $\mathrm{PG}(3,q^{2})$, with $q=p^{n}\geq 29$ and $q\equiv 1\pmod{7}$, under the action of the group $\mathrm{PSL}(2,7)$ in its representation as a subgroup of $\mathrm{PGL}(4,q)$. Further, we study the case $q=29$ in detail with computer assistance. For $q=29$ these $42$-arcs turn out to be complete.
2014
File in questo prodotto:
File Dimensione Formato  
DCC_72.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 172.97 kB
Formato Adobe PDF
172.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/36238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact