Let $\{\omega_{k}\}$ be a complete system of polynomial solutions of the elliptic equation $\sum_{|\alpha|\leq 2m}a_{\alpha}D^{\alpha}u=0$, $a_{\alpha}$ being real constants. We give necessary and sufficient conditions for the completeness of the system $\{(\omega_{k},\de_{\nu}\omega_{k},\ldots,\de_{\nu}^{m-1}\omega_{k})\}$ in $[L^{p}(\partial\Omega)]^{m}$, where $\Omega\subset R^{n}$ is a bounded domain such that $R^{n}\setminus\overline{\Omega}$ is connected and $\partial\Omega\in C^{1}$.
Completeness Theorems for Elliptic Equations of Higher Order with Constant Coefficients
CIALDEA, Alberto
2007-01-01
Abstract
Let $\{\omega_{k}\}$ be a complete system of polynomial solutions of the elliptic equation $\sum_{|\alpha|\leq 2m}a_{\alpha}D^{\alpha}u=0$, $a_{\alpha}$ being real constants. We give necessary and sufficient conditions for the completeness of the system $\{(\omega_{k},\de_{\nu}\omega_{k},\ldots,\de_{\nu}^{m-1}\omega_{k})\}$ in $[L^{p}(\partial\Omega)]^{m}$, where $\Omega\subset R^{n}$ is a bounded domain such that $R^{n}\setminus\overline{\Omega}$ is connected and $\partial\Omega\in C^{1}$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GMJ, 2007.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
258.88 kB
Formato
Adobe PDF
|
258.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.