Given a Hausdorff space X, we calculate the tightness and the character of the hyperspace CL∅(X) of X, endowed with either the co-compact or the lower Vietoris topology, and give some estimates for the tightness of CL∅(X), endowed with the Fell topology. Some properties related to first-countability and countable tightness, such as sequentiality, Fréchet property and, less directly, radiality and pseudoradiality, are investigated as well. To carry out our investigation, we also consider on the base space X several cardinal functions, and we compare some of them (which are newly defined or not so well known) with other classical ones, obtaining results and counterexamples which may be of some independent interest.

Tightness, character and related properties of hyperspace topologies

VITOLO, Paolo
2004-01-01

Abstract

Given a Hausdorff space X, we calculate the tightness and the character of the hyperspace CL∅(X) of X, endowed with either the co-compact or the lower Vietoris topology, and give some estimates for the tightness of CL∅(X), endowed with the Fell topology. Some properties related to first-countability and countable tightness, such as sequentiality, Fréchet property and, less directly, radiality and pseudoradiality, are investigated as well. To carry out our investigation, we also consider on the base space X several cardinal functions, and we compare some of them (which are newly defined or not so well known) with other classical ones, obtaining results and counterexamples which may be of some independent interest.
2004
File in questo prodotto:
File Dimensione Formato  
CHV_tightness.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 565.71 kB
Formato Adobe PDF
565.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact