Let $\Omega\subset\mathbb{C}^n$ be a bounded domain with smooth boundary. We prove the existence of solutions for the equation $\partial \overline{\partial} u = f$ with trace $\gamma(u)$ on $b\Omega$ in the sense of distribution ([7]). Hence, given $g\in \mathcal{D}^\prime (b\Omega)$, we solve the Cauchy problem $\partial \overline{\partial} u = f , \gamma(u)=g$.
Un problema di Cauchy per l'operatore $\partial \overline{\partial}$
BARLETTA, Elisabetta
1986-01-01
Abstract
Let $\Omega\subset\mathbb{C}^n$ be a bounded domain with smooth boundary. We prove the existence of solutions for the equation $\partial \overline{\partial} u = f$ with trace $\gamma(u)$ on $b\Omega$ in the sense of distribution ([7]). Hence, given $g\in \mathcal{D}^\prime (b\Omega)$, we solve the Cauchy problem $\partial \overline{\partial} u = f , \gamma(u)=g$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.