A dynamical nonequilibrium temperature has been proposed to describe relaxational equations for the heat flux. This temperature provides an alternative description to the Maxwell-Cattaneo equation. In the linear regime and in bulk systems both descriptions are equivalent but this is not so when nonlinear effects are included. Here we explore the influence of nonlinear terms on the phase speed of heat waves in nonequilibrium steady states in both theoretical models and we show that their predictions are different. This could allow to explore which description is more suitable, when experiments on these situations will become available. Furthermore, we have analyzed a nonlinear and nonlocal constitutive equation for the heat flux and we have shown its analogy with the Navier-Stokes equation in the regime of phonon hydrodynamics in nanosystems. This analogy allows one to define a dimensionless number for heat flow, analogous to the Reynolds number, and to predict a critical heat flux where nonlinear effects could become dominant.

Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations

CIMMELLI, Vito Antonio;
2010-01-01

Abstract

A dynamical nonequilibrium temperature has been proposed to describe relaxational equations for the heat flux. This temperature provides an alternative description to the Maxwell-Cattaneo equation. In the linear regime and in bulk systems both descriptions are equivalent but this is not so when nonlinear effects are included. Here we explore the influence of nonlinear terms on the phase speed of heat waves in nonequilibrium steady states in both theoretical models and we show that their predictions are different. This could allow to explore which description is more suitable, when experiments on these situations will become available. Furthermore, we have analyzed a nonlinear and nonlocal constitutive equation for the heat flux and we have shown its analogy with the Navier-Stokes equation in the regime of phonon hydrodynamics in nanosystems. This analogy allows one to define a dimensionless number for heat flow, analogous to the Reynolds number, and to predict a critical heat flux where nonlinear effects could become dominant.
2010
File in questo prodotto:
File Dimensione Formato  
Cimmelli-Sellitto-Jou Phys Rev B 81 054301 (2010).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 155.22 kB
Formato Adobe PDF
155.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 76
social impact