The well posedness of a local in time Cauchy problem for a nonlinear hyperbolic heat equation, governing the evolution of a new, semiempirical, temperature scale, is proved. The introduction of such a temperature permits to eliminate the paradox of infinite speed of propagation of thermal disturbances, arising in the classical theory of heat conduction.
Well-posedness results for a nonlinear hyperbolic heat equation
CIMMELLI, Vito Antonio;
1993-01-01
Abstract
The well posedness of a local in time Cauchy problem for a nonlinear hyperbolic heat equation, governing the evolution of a new, semiempirical, temperature scale, is proved. The introduction of such a temperature permits to eliminate the paradox of infinite speed of propagation of thermal disturbances, arising in the classical theory of heat conduction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cimmelli, Kosinski, Ricerche di Matematica, 42 (1993), 49-68.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
908.02 kB
Formato
Adobe PDF
|
908.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.