We study the interplay between CR structures on real Lie algebras and $\mathcal{G}$-Lie foliations (in the sense of E. Fedida [4]). We show that the transverse Kohn-Rossi cohomology of a complete $\mathcal{G}$-Lie foliation $\mathcal{F}$ with transverse CR structure and dense leaves is isomorphic to the Kohn-Rossi dohomology of the structural Lie algebra of $\mathcal{F}$. We classify (up to homotopy) the $f$-structures in the normal bundle of a $\mathcal{G}$-Lie foliation.

On {\em G}-Lie foliations with transverse CR structure

BARLETTA, Elisabetta;DRAGOMIR, Sorin
1996-01-01

Abstract

We study the interplay between CR structures on real Lie algebras and $\mathcal{G}$-Lie foliations (in the sense of E. Fedida [4]). We show that the transverse Kohn-Rossi cohomology of a complete $\mathcal{G}$-Lie foliation $\mathcal{F}$ with transverse CR structure and dense leaves is isomorphic to the Kohn-Rossi dohomology of the structural Lie algebra of $\mathcal{F}$. We classify (up to homotopy) the $f$-structures in the normal bundle of a $\mathcal{G}$-Lie foliation.
1996
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/3102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact