This paper concerns the analysis of the site amplification that significantly influenced the non-uniform damage distribution observed at San Giuliano di Puglia (Italy) after the 2002 Molise earthquake (MW = 5.7). In fact, the historical core of the town, settled on outcropping rock, received less damage than the more recent buildings, founded on a clayey subsoil. Comprehensive geotechnical and geophysical investigations allowed a detailed definition of the subsoil model. The seismic response of the subsoil was analyzed through 2-D finite-element and 3-D spectral-element methods. The accuracy of such models was verified by comparing the numerical predictions to the aftershocks recorded by a temporary seismic network. After calibration, the seismic response to a synthetic input motion reproducing the main shock was simulated. The influence of site amplification on the damage distribution observed was finally interpreted by combining the predicted variation of ground motion parameters with the structural vulnerability of the buildings.

Analysis of site response and building damage distribution due to the 31 October 2002 earthquake at San Giuliano di Puglia (Italy)

VONA, Marco;MASI, Angelo;
2013

Abstract

This paper concerns the analysis of the site amplification that significantly influenced the non-uniform damage distribution observed at San Giuliano di Puglia (Italy) after the 2002 Molise earthquake (MW = 5.7). In fact, the historical core of the town, settled on outcropping rock, received less damage than the more recent buildings, founded on a clayey subsoil. Comprehensive geotechnical and geophysical investigations allowed a detailed definition of the subsoil model. The seismic response of the subsoil was analyzed through 2-D finite-element and 3-D spectral-element methods. The accuracy of such models was verified by comparing the numerical predictions to the aftershocks recorded by a temporary seismic network. After calibration, the seismic response to a synthetic input motion reproducing the main shock was simulated. The influence of site amplification on the damage distribution observed was finally interpreted by combining the predicted variation of ground motion parameters with the structural vulnerability of the buildings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/28970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact