In this paper we consider a thermodynamic system with an internal state variable, and study the stability of its equilibrium states by exploiting the reduced entropy inequality. Remarkably, we derive a Hamiltonian dynamical system ruling the evolution of the system in a suitable thermodynamic phase space. The use of the Hamiltonian formalism allows us to prove the equivalence of the asymptotic stability at constant temperature, at constant entropy and at constant energy, thus extending some classical results by Coleman and Gurtin (J. Chem. Phys., 47, 597–613, 1967).

On the stability of the equilibrium states for hamiltonian dynamical systems arising in non-equilibrium thermodynamics

CIMMELLI, Vito Antonio;PACE, Angelo Raffaele
2007-01-01

Abstract

In this paper we consider a thermodynamic system with an internal state variable, and study the stability of its equilibrium states by exploiting the reduced entropy inequality. Remarkably, we derive a Hamiltonian dynamical system ruling the evolution of the system in a suitable thermodynamic phase space. The use of the Hamiltonian formalism allows us to prove the equivalence of the asymptotic stability at constant temperature, at constant entropy and at constant energy, thus extending some classical results by Coleman and Gurtin (J. Chem. Phys., 47, 597–613, 1967).
2007
File in questo prodotto:
File Dimensione Formato  
Cimmelli, Oliveri, Pace ZAMP 58 2007 736-748.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 129.29 kB
Formato Adobe PDF
129.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/2867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact