For n a positive integer, a group G is called core-n if H/H_G has order at most n for any subgroup H of G (here H_G is tha normal core of H, the largest normal subgroup of G contained in H). It is proved that a finite core-p p-group G has a normal abelian subgroup whose index in G is at most p^2 if p is not 2, which is the best possible bound, and at most 2^6 if p=2.

Finite core-p p-groups

RINAURO, Silvana;
1997

Abstract

For n a positive integer, a group G is called core-n if H/H_G has order at most n for any subgroup H of G (here H_G is tha normal core of H, the largest normal subgroup of G contained in H). It is proved that a finite core-p p-group G has a normal abelian subgroup whose index in G is at most p^2 if p is not 2, which is the best possible bound, and at most 2^6 if p=2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/2849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact