We study CR functions with values in a complex Fréchet space X. We prove a vector valued analog to a result by Baouendi and Trèves (Ann Math 113:387–421, 1981), i.e. any X-valued CR function of Teodorescu class B1 may be locally approximated by X-valued holomorphic functions on C^n. We show that any CR function u ∈ C^ω (M, X) on a real analytic CR hypersurface M ⊂ C^n admits a unique holomorphic extension f to some open neighborhood of M.
Baouendi–Trèves approximation theorem for CR functions with values in a complex Fréchet space
DRAGOMIR, Sorin;
2012-01-01
Abstract
We study CR functions with values in a complex Fréchet space X. We prove a vector valued analog to a result by Baouendi and Trèves (Ann Math 113:387–421, 1981), i.e. any X-valued CR function of Teodorescu class B1 may be locally approximated by X-valued holomorphic functions on C^n. We show that any CR function u ∈ C^ω (M, X) on a real analytic CR hypersurface M ⊂ C^n admits a unique holomorphic extension f to some open neighborhood of M.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1007_s11565-012-0163-7.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
547.93 kB
Formato
Adobe PDF
|
547.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.