We study CR functions with values in a complex Fréchet space X. We prove a vector valued analog to a result by Baouendi and Trèves (Ann Math 113:387–421, 1981), i.e. any X-valued CR function of Teodorescu class B1 may be locally approximated by X-valued holomorphic functions on C^n. We show that any CR function u ∈ C^ω (M, X) on a real analytic CR hypersurface M ⊂ C^n admits a unique holomorphic extension f to some open neighborhood of M.

Baouendi–Trèves approximation theorem for CR functions with values in a complex Fréchet space

DRAGOMIR, Sorin;
2012-01-01

Abstract

We study CR functions with values in a complex Fréchet space X. We prove a vector valued analog to a result by Baouendi and Trèves (Ann Math 113:387–421, 1981), i.e. any X-valued CR function of Teodorescu class B1 may be locally approximated by X-valued holomorphic functions on C^n. We show that any CR function u ∈ C^ω (M, X) on a real analytic CR hypersurface M ⊂ C^n admits a unique holomorphic extension f to some open neighborhood of M.
2012
File in questo prodotto:
File Dimensione Formato  
10.1007_s11565-012-0163-7.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 547.93 kB
Formato Adobe PDF
547.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/28197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact