The low fluorescence quantum yield of 8-hydroxyquinoline cannot be correctly interpreted without knowing the form that such a compound assumes in different environments. The commonly accepted emission-quenching excited-state proton transfer can follow different reaction paths if 8-hydroxyquinoline is dimeric or monomeric or if it exists in the form of cis and trans conformers; in this light, the knowledge of the compound form in a particular environment is basic. We have performed a spectroscopic and computational investigation aimed at the determination of the form of 8-hydroxyquinoline in different solvents. UV-vis, fluorescence, and IR spectral features have been assigned by ab initio computations based on the density functional theory and time-dependent density functional theory; the density functional theory and MP2 computations have been applied to the determination of the relative stability of the dimeric and monomeric cis and trans forms of 8-hydroxyquinoline in different solvents. Molecular dynamics computations have been used to determine the compound behavior in water solutions. According to our results, 8-hydroxyquinoline shows a clear preference for the cis conformation (as dimer or monomer), but, in water solutions, a small fraction of the trans conformation is also present.
8-Hydroxyquinoline Monomer, Water Adducts, and Dimer. Environmental Influences on Structure, Spectroscopic Properties, and Relative Stability of Cis and Trans Conformers
AMATI, Mario;BELVISO, Sandra;CRISTINZIANO, Pier Luigi;MINICHINO, Camilla;
2007-01-01
Abstract
The low fluorescence quantum yield of 8-hydroxyquinoline cannot be correctly interpreted without knowing the form that such a compound assumes in different environments. The commonly accepted emission-quenching excited-state proton transfer can follow different reaction paths if 8-hydroxyquinoline is dimeric or monomeric or if it exists in the form of cis and trans conformers; in this light, the knowledge of the compound form in a particular environment is basic. We have performed a spectroscopic and computational investigation aimed at the determination of the form of 8-hydroxyquinoline in different solvents. UV-vis, fluorescence, and IR spectral features have been assigned by ab initio computations based on the density functional theory and time-dependent density functional theory; the density functional theory and MP2 computations have been applied to the determination of the relative stability of the dimeric and monomeric cis and trans forms of 8-hydroxyquinoline in different solvents. Molecular dynamics computations have been used to determine the compound behavior in water solutions. According to our results, 8-hydroxyquinoline shows a clear preference for the cis conformation (as dimer or monomer), but, in water solutions, a small fraction of the trans conformation is also present.File | Dimensione | Formato | |
---|---|---|---|
JPhysChemA_111_13403_2007.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
375.77 kB
Formato
Adobe PDF
|
375.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.