It is shown that for doubling weights, the zeros of the associated orthogonal polynomials are uniformly spaced in the sense that if $\cos\theta_{m,k}, \theta_{m,k}\in [0, pi]$ are the zeros of the $m$-th orthogonal polynomial associated with $w$, then $\theta_{m,k}-\theta_{m,k+1}\sim 1/m$. It is also shown that for doubling weights, neighboring Cotes numbers are of the same order. Finally, it is proved that these two properties are actually equivalent to the doubling property of the weight function.

Uniform spacing of zeros of orthogonal polynomials

MASTROIANNI, Giuseppe Maria;
2010

Abstract

It is shown that for doubling weights, the zeros of the associated orthogonal polynomials are uniformly spaced in the sense that if $\cos\theta_{m,k}, \theta_{m,k}\in [0, pi]$ are the zeros of the $m$-th orthogonal polynomial associated with $w$, then $\theta_{m,k}-\theta_{m,k+1}\sim 1/m$. It is also shown that for doubling weights, neighboring Cotes numbers are of the same order. Finally, it is proved that these two properties are actually equivalent to the doubling property of the weight function.
File in questo prodotto:
File Dimensione Formato  
MastroianniTotikCA2010.pdf

non disponibili

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 327.08 kB
Formato Adobe PDF
327.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/2342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact