A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC) and black carbon (BC) and to detect organic carbon (OC) in fine atmospheric aerosols (PM2.5). The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process. The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t) every 5 min. Wavelength dependence of τaer (λ, t) has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC) concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC) particles.
A new algorithm for brown and black carbon identification and organic carbon detection in fine atmospheric aerosols by a multi-wavelength Aethalometer
ESPOSITO, Francesco;
2012-01-01
Abstract
A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC) and black carbon (BC) and to detect organic carbon (OC) in fine atmospheric aerosols (PM2.5). The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process. The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t) every 5 min. Wavelength dependence of τaer (λ, t) has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC) concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC) particles.File | Dimensione | Formato | |
---|---|---|---|
amtd-5-1003-2012.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
506.1 kB
Formato
Adobe PDF
|
506.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.