Gridded precipitation datasets (GPDs) have complemented gauge-based measurements in global hydrology by providing spatiotemporally continuous rainfall estimates for streamflow prediction. However, these datasets suffer from uncertainties in space and time, particularly in complex terrains like the Himalayas. Merging multi-GPDs offers a potential solution to reduce such uncertainties, but the actual contribution of the merged product to hydrological modeling remains underexplored in data-scarce and topographically complex regions. Here, we applied a gauge-independent merging technique called Signal-to-Noise Ratio optimization (SNR-opt) to merge three precipitation products: ERA5, SM2RAIN, and IMERG-late. The resulting Merged Gridded Precipitation Dataset (MGPD) was evaluated using the hydrological model (HYMOD) across three major river basins in the Central Himalayas (Koshi, Narayani, and Karnali). The results show that MGPD significantly outperforms the individual GPDs in streamflow simulation. This is evidenced by higher Nash–Sutcliffe Efficiency (NSE) values, 0.87 (Narayani) and 0.86 (Karnali), compared to ERA5 (0.83, 0.82), SM2RAIN (0.83, 0.85), and IMERG-Late (0.82, 0.78). In Koshi, the merged product (NSE = 0.80) showed slightly lower performance than SM2RAIN (NSE = 0.82) and ERA5 (NSE = 0.81), likely due to the poor performance of IMERG-Late (NSE = 0.69) in this basin. These findings underscore the value of merging precipitation datasets to enhance the accuracy and reliability of hydrological modeling, especially in ungauged or data-scarce mountainous regions, offering important implications for water resource management and forecasting.

Quantifying the Added Values of a Merged Precipitation Product in Streamflow Prediction over the Central Himalayas

Albano R.
Supervision
;
Asif M.
2025-01-01

Abstract

Gridded precipitation datasets (GPDs) have complemented gauge-based measurements in global hydrology by providing spatiotemporally continuous rainfall estimates for streamflow prediction. However, these datasets suffer from uncertainties in space and time, particularly in complex terrains like the Himalayas. Merging multi-GPDs offers a potential solution to reduce such uncertainties, but the actual contribution of the merged product to hydrological modeling remains underexplored in data-scarce and topographically complex regions. Here, we applied a gauge-independent merging technique called Signal-to-Noise Ratio optimization (SNR-opt) to merge three precipitation products: ERA5, SM2RAIN, and IMERG-late. The resulting Merged Gridded Precipitation Dataset (MGPD) was evaluated using the hydrological model (HYMOD) across three major river basins in the Central Himalayas (Koshi, Narayani, and Karnali). The results show that MGPD significantly outperforms the individual GPDs in streamflow simulation. This is evidenced by higher Nash–Sutcliffe Efficiency (NSE) values, 0.87 (Narayani) and 0.86 (Karnali), compared to ERA5 (0.83, 0.82), SM2RAIN (0.83, 0.85), and IMERG-Late (0.82, 0.78). In Koshi, the merged product (NSE = 0.80) showed slightly lower performance than SM2RAIN (NSE = 0.82) and ERA5 (NSE = 0.81), likely due to the poor performance of IMERG-Late (NSE = 0.69) in this basin. These findings underscore the value of merging precipitation datasets to enhance the accuracy and reliability of hydrological modeling, especially in ungauged or data-scarce mountainous regions, offering important implications for water resource management and forecasting.
2025
File in questo prodotto:
File Dimensione Formato  
remotesensing-17-02170-v2_compressed.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/206377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact