Background: Controversy exists whether transmyocardial laser revascularization (TMR) is associated with angiogenesis or neuromodulation and whether these are time-dependent phenomena. Accordingly, we performed a time-course analysis of the expression of angiogenic and neuronal factors following experimental percutaneous TMR. Methods and Results: Five weeks after placing ameroid constrictors on the circumflex coronary artery, 16 pigs underwent left ventricular mapping guided TMR using Ho:YAG laser (2 J × 1 pulse) at 30 sites directed at the ischemic zones and 11 animals were ischemic controls. Histology and immunostaining were obtained at 1 and 2 weeks (4 TMR and 3 controls at each time point) and at 4 weeks (8 TMR and 5 controls) for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), nerve growth factor (βNGF), substance P (SP), and monocyte chemoattractant protein-1 (MCP-1). Immunoreactivity was scored using a digital image analysis system. Factor VIII staining was used for blood vessel counting. Enhanced regional expression of VEGF, bFGF and MCP-1 in the TMR group was noted at 1 and 2 weeks with a threefold increase at 4 weeks following TMR compared to controls. βNGF expression in the TMR group was enhanced at 1 and 2 weeks with subsequent decline at 4 weeks to the controls level. SP expression was not significantly different between groups at all time points. There was a twofold increase in the number of blood vessels in the TMR group at 4 weeks, which was not apparent earlier. Conclusions: These immunohistological findings suggest that cytokines expression compatible with angiogenesis and neuromodulation occurs early after TMR. Up-regulation of angiogenic and inflammatory cytokines may be more sustained than neuromodulation.

Laser myocardial revascularization modulates expression of angiogenic, neuronal, and inflammatory cytokines in a porcine model of chronic myocardial ischemia

Stabile E.;
2001-01-01

Abstract

Background: Controversy exists whether transmyocardial laser revascularization (TMR) is associated with angiogenesis or neuromodulation and whether these are time-dependent phenomena. Accordingly, we performed a time-course analysis of the expression of angiogenic and neuronal factors following experimental percutaneous TMR. Methods and Results: Five weeks after placing ameroid constrictors on the circumflex coronary artery, 16 pigs underwent left ventricular mapping guided TMR using Ho:YAG laser (2 J × 1 pulse) at 30 sites directed at the ischemic zones and 11 animals were ischemic controls. Histology and immunostaining were obtained at 1 and 2 weeks (4 TMR and 3 controls at each time point) and at 4 weeks (8 TMR and 5 controls) for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), nerve growth factor (βNGF), substance P (SP), and monocyte chemoattractant protein-1 (MCP-1). Immunoreactivity was scored using a digital image analysis system. Factor VIII staining was used for blood vessel counting. Enhanced regional expression of VEGF, bFGF and MCP-1 in the TMR group was noted at 1 and 2 weeks with a threefold increase at 4 weeks following TMR compared to controls. βNGF expression in the TMR group was enhanced at 1 and 2 weeks with subsequent decline at 4 weeks to the controls level. SP expression was not significantly different between groups at all time points. There was a twofold increase in the number of blood vessels in the TMR group at 4 weeks, which was not apparent earlier. Conclusions: These immunohistological findings suggest that cytokines expression compatible with angiogenesis and neuromodulation occurs early after TMR. Up-regulation of angiogenic and inflammatory cytokines may be more sustained than neuromodulation.
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/205777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact