Let $\{v_{\alpha}\}$ be a system of polynomial solutions of the parabolic equation $a_{hk}\partial_{x_{h}x_{k}}u - \partial_t u =0$ in a bounded $C^1$-cylinder $\Omega_{T}$ contained in $\mathbb{R}^{n+1}$. Here $a_{hk}\partial_{x_{h}x_{k}}$ is an elliptic operator with real constant coefficients. We prove that $\{v_{\alpha}\}$ is complete in $C^{0}(\Sigma')$, where $\Sigma'$ is the parabolic boundary of $\Omega_{T}$. Similar results are proved for the adjoint equation $a_{hk}\partial_{x_{h}x_{k}} u+ \partial_t u =0$.

Completeness theorems in the uniform norm for a parabolic equation

Alberto Cialdea
;
In corso di stampa

Abstract

Let $\{v_{\alpha}\}$ be a system of polynomial solutions of the parabolic equation $a_{hk}\partial_{x_{h}x_{k}}u - \partial_t u =0$ in a bounded $C^1$-cylinder $\Omega_{T}$ contained in $\mathbb{R}^{n+1}$. Here $a_{hk}\partial_{x_{h}x_{k}}$ is an elliptic operator with real constant coefficients. We prove that $\{v_{\alpha}\}$ is complete in $C^{0}(\Sigma')$, where $\Sigma'$ is the parabolic boundary of $\Omega_{T}$. Similar results are proved for the adjoint equation $a_{hk}\partial_{x_{h}x_{k}} u+ \partial_t u =0$.
In corso di stampa
File in questo prodotto:
File Dimensione Formato  
lavoro_compl_unif_5.pdf

solo utenti autorizzati

Licenza: Non definito
Dimensione 279.43 kB
Formato Adobe PDF
279.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/204656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact