Let $\{v_{\alpha}\}$ be a system of polynomial solutions of the parabolic equation $a_{hk}\partial_{x_{h}x_{k}}u - \partial_t u =0$ in a bounded $C^1$-cylinder $\Omega_{T}$ contained in $\mathbb{R}^{n+1}$. Here $a_{hk}\partial_{x_{h}x_{k}}$ is an elliptic operator with real constant coefficients. We prove that $\{v_{\alpha}\}$ is complete in $C^{0}(\Sigma')$, where $\Sigma'$ is the parabolic boundary of $\Omega_{T}$. Similar results are proved for the adjoint equation $a_{hk}\partial_{x_{h}x_{k}} u+ \partial_t u =0$.

Completeness theorems in the uniform norm for a parabolic equation

Cialdea, Alberto
;
2025-01-01

Abstract

Let $\{v_{\alpha}\}$ be a system of polynomial solutions of the parabolic equation $a_{hk}\partial_{x_{h}x_{k}}u - \partial_t u =0$ in a bounded $C^1$-cylinder $\Omega_{T}$ contained in $\mathbb{R}^{n+1}$. Here $a_{hk}\partial_{x_{h}x_{k}}$ is an elliptic operator with real constant coefficients. We prove that $\{v_{\alpha}\}$ is complete in $C^{0}(\Sigma')$, where $\Sigma'$ is the parabolic boundary of $\Omega_{T}$. Similar results are proved for the adjoint equation $a_{hk}\partial_{x_{h}x_{k}} u+ \partial_t u =0$.
2025
File in questo prodotto:
File Dimensione Formato  
C_Mare_unif.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 310.37 kB
Formato Adobe PDF
310.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/204656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact