By means of a symbolic method, a new family of time-space harmonic polynomials with respect to Lévy processes is given. The coefficients of these polynomials involve a formal expression of Lévy processes by which many identities are stated. We show that this family includes classical families of polynomials such as Hermite polynomials. Poisson–Charlier polynomials result to be a linear combinations of these new polynomials, when they have the property to be time-space harmonic with respect to the compensated Poisson process. The more general class of Lévy–Sheffer polynomials is recovered as a linear combination of these new polynomials, when they are time-space harmonic with respect to Lévy processes of very general form. We show the role played by cumulants of Lévy processes, so that connections with boolean and free cumulants are also stated.

A new family of time-space harmonic polynomials with respect to Lèvy processes

DI NARDO, Elvira;
2012-01-01

Abstract

By means of a symbolic method, a new family of time-space harmonic polynomials with respect to Lévy processes is given. The coefficients of these polynomials involve a formal expression of Lévy processes by which many identities are stated. We show that this family includes classical families of polynomials such as Hermite polynomials. Poisson–Charlier polynomials result to be a linear combinations of these new polynomials, when they have the property to be time-space harmonic with respect to the compensated Poisson process. The more general class of Lévy–Sheffer polynomials is recovered as a linear combination of these new polynomials, when they are time-space harmonic with respect to Lévy processes of very general form. We show the role played by cumulants of Lévy processes, so that connections with boolean and free cumulants are also stated.
2012
File in questo prodotto:
File Dimensione Formato  
finaleannali.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 382.05 kB
Formato Adobe PDF
382.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/20185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact