Human peripheral blood leukocytes from healthy volunteers have been employed to investigate the induction of genotoxic effects following 2 h exposure to 900 MHz radiofrequency radiation. The GSM signal has been studied at specific absorption rates (SAR) of 0.3 and 1 W/kg. The exposures were carried out in a waveguide system under strictly controlled conditions of both dosimetry and temperature. The same temperature conditions (37.0 +/- 0.1 degrees C) were realized in a second waveguide, employed to perform sham exposures. The induction of DNA damage was evaluated in leukocytes by applying the alkaline single cell gel electrophoresis (SCGE)/comet assay, while structural chromosome aberrations and sister chromatid exchanges were evaluated in lymphocytes stimulated with phytohemagglutinin. Alterations in kinetics of cell proliferation were determined by calculating the mitotic index. Positive controls were also provided by using methyl methanesulfonate (MMS) for comet assay and mitomycin-C (MMC), for chromosome aberration, or sister chromatid exchange tests. No statistically significant differences were detected in exposed samples in comparison with sham exposed ones for all the parameters investigated. On the contrary, the positive controls gave a statistically significant increase in DNA damage in all cases, as expected. Thus the results obtained in our experimental conditions do not support the hypothesis that 900 MHz radiofrequency field exposure induces DNA damage in human peripheral blood leukocytes in this range of SAR.
Evaluation of Genotoxic Effects in human Peripheral Blood Leukocytes following an acute in vitro Exposure to 900 MHz Radiofrequency Fields
LIOI, Maria Brigida;
2005-01-01
Abstract
Human peripheral blood leukocytes from healthy volunteers have been employed to investigate the induction of genotoxic effects following 2 h exposure to 900 MHz radiofrequency radiation. The GSM signal has been studied at specific absorption rates (SAR) of 0.3 and 1 W/kg. The exposures were carried out in a waveguide system under strictly controlled conditions of both dosimetry and temperature. The same temperature conditions (37.0 +/- 0.1 degrees C) were realized in a second waveguide, employed to perform sham exposures. The induction of DNA damage was evaluated in leukocytes by applying the alkaline single cell gel electrophoresis (SCGE)/comet assay, while structural chromosome aberrations and sister chromatid exchanges were evaluated in lymphocytes stimulated with phytohemagglutinin. Alterations in kinetics of cell proliferation were determined by calculating the mitotic index. Positive controls were also provided by using methyl methanesulfonate (MMS) for comet assay and mitomycin-C (MMC), for chromosome aberration, or sister chromatid exchange tests. No statistically significant differences were detected in exposed samples in comparison with sham exposed ones for all the parameters investigated. On the contrary, the positive controls gave a statistically significant increase in DNA damage in all cases, as expected. Thus the results obtained in our experimental conditions do not support the hypothesis that 900 MHz radiofrequency field exposure induces DNA damage in human peripheral blood leukocytes in this range of SAR.File | Dimensione | Formato | |
---|---|---|---|
Bioelectromagnetics_2005.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
133.75 kB
Formato
Adobe PDF
|
133.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.