Elastin is known to self-aggregate in twisted-rope filaments. However, an ultrastructural organization different from the fibrils typical of elastin, but rather similar to those shown by amyloid networks, is shown by the polypeptide sequence encoded by exon 30 of human tropoelastin. To better understand the molecular properties of this sequence to give amyloid fibers, we used CD, NMR, and FTIR (Fourier transform infrared spectroscopy) to identify the structural characteristics of the peptide. In this study, we have demonstrated, by FTIR, that antiparallel beta-sheet conformation is predominant in the exon 30 fibers. These physical-chemical studies were combined with transmission electron microscopy and atomic force microscopy to analyze the supramolecular structure of the self-assembled aggregate. These studies show the presence of fibrils that interact side-by-side probably originating from an extensive self-interaction of elemental cross beta-structures. Similar sequences, of the general type XGGZG(X, Z = V, L, A, I), are widely found in many proteins such as collagens IV and XVII, major prion protein precursor, amyloid beta A4 precursor protein-binding family, etc., thus suggesting that this sequence could be involved in contributing to the self-assembly of amyloid fibers even in other proteins.

Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin.

TAMBURRO, Antonio Mario;PEPE, Antonietta;BOCHICCHIO, Brigida;
2005

Abstract

Elastin is known to self-aggregate in twisted-rope filaments. However, an ultrastructural organization different from the fibrils typical of elastin, but rather similar to those shown by amyloid networks, is shown by the polypeptide sequence encoded by exon 30 of human tropoelastin. To better understand the molecular properties of this sequence to give amyloid fibers, we used CD, NMR, and FTIR (Fourier transform infrared spectroscopy) to identify the structural characteristics of the peptide. In this study, we have demonstrated, by FTIR, that antiparallel beta-sheet conformation is predominant in the exon 30 fibers. These physical-chemical studies were combined with transmission electron microscopy and atomic force microscopy to analyze the supramolecular structure of the self-assembled aggregate. These studies show the presence of fibrils that interact side-by-side probably originating from an extensive self-interaction of elemental cross beta-structures. Similar sequences, of the general type XGGZG(X, Z = V, L, A, I), are widely found in many proteins such as collagens IV and XVII, major prion protein precursor, amyloid beta A4 precursor protein-binding family, etc., thus suggesting that this sequence could be involved in contributing to the self-assembly of amyloid fibers even in other proteins.
File in questo prodotto:
File Dimensione Formato  
6_JBC_2005.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 526.36 kB
Formato Adobe PDF
526.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/20122
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 79
social impact