The integration of machine learning (ML) into self-governing spraying systems is one of the major developments in digital precision agriculture that is significantly improving resource efficiency, sustainability, and production. This study looks at current advances in machine learning applications for automated spraying in agricultural mechanisation, emphasising the new innovations, difficulties, and prospects. This study provides an in-depth analysis of the three main categories of autonomous sprayers—drones, ground-based robots, and tractor-mounted systems—that incorporate machine learning techniques. A comprehensive review of research published between 2014 and 2024 was conducted using Web of Science and Scopus, selecting relevant studies on agricultural robotics, sensor integration, and ML-based spraying automation. The results indicate that supervised, unsupervised, and deep learning models increasingly contribute to improved real-time decision making, performance in pest and disease detection, as well as accurate application of agricultural plant protection. By utilising cutting-edge technology like multispectral sensors, LiDAR, and sophisticated neural networks, these systems significantly increase spraying operations’ efficiency while cutting waste and significantly minimising their negative effects on the environment. Notwithstanding significant advances, issues still exist, such as the requirement for high-quality datasets, system calibration, and flexibility in a range of field circumstances. This study highlights important gaps in the literature and suggests future areas of inquiry to develop ML-driven autonomous spraying even more, assisting in the shift to more intelligent and environmentally friendly farming methods.

Recent Developments and Future Prospects in the Integration of Machine Learning in Mechanised Systems for Autonomous Spraying: A Brief Review

Toscano F.;Fiorentino C.;D'Antonio P.
2025-01-01

Abstract

The integration of machine learning (ML) into self-governing spraying systems is one of the major developments in digital precision agriculture that is significantly improving resource efficiency, sustainability, and production. This study looks at current advances in machine learning applications for automated spraying in agricultural mechanisation, emphasising the new innovations, difficulties, and prospects. This study provides an in-depth analysis of the three main categories of autonomous sprayers—drones, ground-based robots, and tractor-mounted systems—that incorporate machine learning techniques. A comprehensive review of research published between 2014 and 2024 was conducted using Web of Science and Scopus, selecting relevant studies on agricultural robotics, sensor integration, and ML-based spraying automation. The results indicate that supervised, unsupervised, and deep learning models increasingly contribute to improved real-time decision making, performance in pest and disease detection, as well as accurate application of agricultural plant protection. By utilising cutting-edge technology like multispectral sensors, LiDAR, and sophisticated neural networks, these systems significantly increase spraying operations’ efficiency while cutting waste and significantly minimising their negative effects on the environment. Notwithstanding significant advances, issues still exist, such as the requirement for high-quality datasets, system calibration, and flexibility in a range of field circumstances. This study highlights important gaps in the literature and suggests future areas of inquiry to develop ML-driven autonomous spraying even more, assisting in the shift to more intelligent and environmentally friendly farming methods.
2025
File in questo prodotto:
File Dimensione Formato  
agriengineering-07-00142.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 5.42 MB
Formato Adobe PDF
5.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/200696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact