Antidepressants are emerging contaminants that have raised global concern due to their abuse. Venlafaxine (VFX), a serotonin and norepinephrine reuptake inhibitor, can cause adverse and potentially toxic effects on aquatic organisms. Electrochemical advanced oxidation processes (EAOPs) are gaining attention as promising degradation techniques for a variety of drugs. EAOP methods proposed for VFX degradation mainly utilize boron-doped diamond (BDD) electrodes, characterized by low background current and high oxygen overpotential. However, challenges arise, including delamination from the substrate, difficulties in scaling up, and limited service life. In this study, platinum was employed as an anode for the galvanostatic degradation of VFX, due to its stability and well-established surface cleaning procedure, which ensured high reproducibility. A 0.1 M Na2SO4 solution at pH 9 was used as the supporting electrolyte, and a current density of 25 mA/cm2 was applied. After 7 h, a degradation efficiency of 94% was achieved for a 25 ppm VFX solution. The hydroxyl and sulfate radicals generated in the electrochemical system were the active species responsible for VFX degradation, which followed a first-order kinetic model with a rate constant of 0.0084 min−1. The main degradation intermediates were identified through LC-MS, including two isomers with a nominal m/z of 276 and three isomers with a nominal m/z of 294. The toxicity of the VFX degradation products was assessed by an in silico prediction model. This evaluation confirmed the sustainability of the developed method.

Electrochemical Degradation of Venlafaxine on Platinum Electrodes: Identification of Transformation Products by LC-MS/MS and In Silico Ecotoxicity Assessment

Zizzamia, Angelica R.;Lelario, Filomena
;
Tesoro, Carmen;Ciriello, Rosanna
2025-01-01

Abstract

Antidepressants are emerging contaminants that have raised global concern due to their abuse. Venlafaxine (VFX), a serotonin and norepinephrine reuptake inhibitor, can cause adverse and potentially toxic effects on aquatic organisms. Electrochemical advanced oxidation processes (EAOPs) are gaining attention as promising degradation techniques for a variety of drugs. EAOP methods proposed for VFX degradation mainly utilize boron-doped diamond (BDD) electrodes, characterized by low background current and high oxygen overpotential. However, challenges arise, including delamination from the substrate, difficulties in scaling up, and limited service life. In this study, platinum was employed as an anode for the galvanostatic degradation of VFX, due to its stability and well-established surface cleaning procedure, which ensured high reproducibility. A 0.1 M Na2SO4 solution at pH 9 was used as the supporting electrolyte, and a current density of 25 mA/cm2 was applied. After 7 h, a degradation efficiency of 94% was achieved for a 25 ppm VFX solution. The hydroxyl and sulfate radicals generated in the electrochemical system were the active species responsible for VFX degradation, which followed a first-order kinetic model with a rate constant of 0.0084 min−1. The main degradation intermediates were identified through LC-MS, including two isomers with a nominal m/z of 276 and three isomers with a nominal m/z of 294. The toxicity of the VFX degradation products was assessed by an in silico prediction model. This evaluation confirmed the sustainability of the developed method.
2025
File in questo prodotto:
File Dimensione Formato  
molecules-30-01881.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/199036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact