The semi-automated extraction of landforms using GIS analysis is one of the main topics in computer analyses. The use of digital elevation models (DEMs) in GIS applications makes the extraction and classification procedure of landforms easier and faster. In the present paper, we assess the accuracy of semi-automated landform maps by means of a comparison with hand-made landform maps realized in the Pleistocene Agri intermontane basin (southern Italy). In this study, landform maps at three different scales of 1:50,000, 1:25,000, and 1:10,000 were used to ensure a good level of detail in the spatial distribution of landforms. The semi-automated extraction and classification of landforms was performed using a GIS-related toolbox, which identified ~48 different landform types. Conversely, the hand-made landform map identified ~57 landforms pertaining to various morphogenetic groups, such as structural, fluvial, karst landforms, etc. An overlap of the two landform maps was produced using GIS applications, and a 3D block diagram visualization was realized. A visual inspection of the overlapping maps was conducted using different spatial scales of patch frames and then analyzed to provide information on the accuracy of landform extraction using the implemented tools.
Testing Semi-Automated Landforms Extraction Using Field-Based Geomorphological Maps
Giano S. I.
;
2025-01-01
Abstract
The semi-automated extraction of landforms using GIS analysis is one of the main topics in computer analyses. The use of digital elevation models (DEMs) in GIS applications makes the extraction and classification procedure of landforms easier and faster. In the present paper, we assess the accuracy of semi-automated landform maps by means of a comparison with hand-made landform maps realized in the Pleistocene Agri intermontane basin (southern Italy). In this study, landform maps at three different scales of 1:50,000, 1:25,000, and 1:10,000 were used to ensure a good level of detail in the spatial distribution of landforms. The semi-automated extraction and classification of landforms was performed using a GIS-related toolbox, which identified ~48 different landform types. Conversely, the hand-made landform map identified ~57 landforms pertaining to various morphogenetic groups, such as structural, fluvial, karst landforms, etc. An overlap of the two landform maps was produced using GIS applications, and a 3D block diagram visualization was realized. A visual inspection of the overlapping maps was conducted using different spatial scales of patch frames and then analyzed to provide information on the accuracy of landform extraction using the implemented tools.File | Dimensione | Formato | |
---|---|---|---|
Giano etal2025R.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.