In this study, direct numerical simulations of the reacting mixing layer between two streams of air and fuel with different velocity and temperature have been performed using a four-step mechanism for the ignition of n-heptane. The localization of the ignition spots and the dependence of the ignition delay time on the initial conditions have been discussed and the results have been compared with those of several experimental and numerical contributions in the literature. The results show the importance of mixture fraction and scalar dissipation rate in favoring the ignition process on the sides of the jet, fully matching the outcomes of other works that use more simplified kinetic mechanisms. This result highlights the role of fluiddynamic phenomena in the development of autoignition in a mixing layer. Furthermore, ignition spots are found on the tip of the jet favored by a local increase in temperature.

A 2-D investigation of n-heptane autoignition by means of direct numerical simulation

VIGGIANO, ANNARITA;MAGI, Vinicio
2004

Abstract

In this study, direct numerical simulations of the reacting mixing layer between two streams of air and fuel with different velocity and temperature have been performed using a four-step mechanism for the ignition of n-heptane. The localization of the ignition spots and the dependence of the ignition delay time on the initial conditions have been discussed and the results have been compared with those of several experimental and numerical contributions in the literature. The results show the importance of mixture fraction and scalar dissipation rate in favoring the ignition process on the sides of the jet, fully matching the outcomes of other works that use more simplified kinetic mechanisms. This result highlights the role of fluiddynamic phenomena in the development of autoignition in a mixing layer. Furthermore, ignition spots are found on the tip of the jet favored by a local increase in temperature.
File in questo prodotto:
File Dimensione Formato  
Viggiano_2004.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 638.73 kB
Formato Adobe PDF
638.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/19719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 48
social impact