Abstract: The Senise red pepper, known as peperone crusco, is a protected geographical indication (PGI) product from Basilicata, Italy, traditionally consumed dried. Producers use semi-open greenhouses to meet PGI standards, but significant losses are caused by rot from microorganisms thriving in high moisture, temperature, and humidity, which also encourage pest infestations. To minimize losses, a low-cost alert system was developed. The study, conducted in summer 2022 and 2023, used external parameters from the ALSIA Senise weather station and internal sensors monitoring the air temperature and humidity inside the greenhouse. Since rot is complex and difficult to model, an artificial intelligence (AI)-based approach was adopted. A feed forward neural network (FFNN) estimated greenhouse climate conditions as if it were empty, comparing them with actual values when peppers were present. This revealed the most critical period was the first 3–4 days after introduction and identified a critical air relative humidity threshold. The system could also predict microclimatic parameters inside the greenhouse with red peppers, issuing warnings one hour before risk conditions arose. In 2023, it was tested by comparing predicted values with previously identified thresholds. When critical levels were exceeded, greenhouse operators were alerted to adjust conditions. In 2023, pepper rot decreased.

Smart Sensors and Artificial Intelligence Driven Alert System for Optimizing Red Peppers Drying in Southern Italy

Costanza Fiorentino
;
Paola D’Antonio
;
Francesco Toscano;Nicola Capece;Roberto Colonna;
2025-01-01

Abstract

Abstract: The Senise red pepper, known as peperone crusco, is a protected geographical indication (PGI) product from Basilicata, Italy, traditionally consumed dried. Producers use semi-open greenhouses to meet PGI standards, but significant losses are caused by rot from microorganisms thriving in high moisture, temperature, and humidity, which also encourage pest infestations. To minimize losses, a low-cost alert system was developed. The study, conducted in summer 2022 and 2023, used external parameters from the ALSIA Senise weather station and internal sensors monitoring the air temperature and humidity inside the greenhouse. Since rot is complex and difficult to model, an artificial intelligence (AI)-based approach was adopted. A feed forward neural network (FFNN) estimated greenhouse climate conditions as if it were empty, comparing them with actual values when peppers were present. This revealed the most critical period was the first 3–4 days after introduction and identified a critical air relative humidity threshold. The system could also predict microclimatic parameters inside the greenhouse with red peppers, issuing warnings one hour before risk conditions arose. In 2023, it was tested by comparing predicted values with previously identified thresholds. When critical levels were exceeded, greenhouse operators were alerted to adjust conditions. In 2023, pepper rot decreased.
2025
File in questo prodotto:
File Dimensione Formato  
sustainability-17-01682 (1).pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Non definito
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/196135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact