We construct minimal blocking sets with respect to generators on the Hermitian surfaces H(n,q2) when n and q are both odd. A blocking set arises from q+1 quadrics in PG(n,q2) whose polarities commute with a unitary polarity, constructed from the union of Baer sub-quadrics with the common intersections deleted.

Blocking sets of H(n,q^2) with respect to generators

COSSIDENTE, Antonio;
2011-01-01

Abstract

We construct minimal blocking sets with respect to generators on the Hermitian surfaces H(n,q2) when n and q are both odd. A blocking set arises from q+1 quadrics in PG(n,q2) whose polarities commute with a unitary polarity, constructed from the union of Baer sub-quadrics with the common intersections deleted.
2011
File in questo prodotto:
File Dimensione Formato  
blocking_sets.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 159.39 kB
Formato Adobe PDF
159.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/19478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact