This article describes results of an effort to improve the parallel efficiency of a solver for turbulent reacting flows on two computer architectures. The compact finite-difference scheme employed for the solution of the differential equations involves the inversion of multiple tridiagonal matrices at each time step. Detailed performance evaluation of the standard LU, parallel partition LU, and parallel diagonal dominant algorithms are presented. The speed-up and efficiencies of these parallel strategies are critically compared and evaluated based on both computation and communication complexities, on the CRAY XT4 and IBM Blue Gene/P architectures.

Enhancing the Performance of a Parallel Solver for Turbulent Reacting Flow Simulations

MAGI, Vinicio;
2011

Abstract

This article describes results of an effort to improve the parallel efficiency of a solver for turbulent reacting flows on two computer architectures. The compact finite-difference scheme employed for the solution of the differential equations involves the inversion of multiple tridiagonal matrices at each time step. Detailed performance evaluation of the standard LU, parallel partition LU, and parallel diagonal dominant algorithms are presented. The speed-up and efficiencies of these parallel strategies are critically compared and evaluated based on both computation and communication complexities, on the CRAY XT4 and IBM Blue Gene/P architectures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/19456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact