: A recent author's fractal fluid-dynamic dispersion theory in porous media has focused on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic constant) component of a properly normalized version of these coefficients exhibits a clearly detectable minimum in correspondence with the same fractal dimension (d ≅ 1.7) that seems to characterize the diffusion-limited aggregation state of cells in advanced stages of cancerous lesion progression. That circumstance suggests that such a critical fractal dimension, which is also reminiscent of the colloidal state of solutions (and may therefore identify the microscale architecture of both living and non-living two-phase systems in state transition conditions) may actually represent a sort of universal nature imprint. Additionally, it suggests that the closed-form analytical solution that was provided for the effective macrodispersion coefficients in fractal porous media may be a reliable candidate as a physically-based descriptor of blood perfusion dynamics in healthy as well as cancerous tissues. In order to evaluate the biological meaningfulness of this specific fluid-dynamic parameter, a preliminary validation is performed by comparison with the results of imaging-based clinical surveys. Moreover, a multifractal extension of the theory is proposed and discussed in view of a perspective interpretative diagnostic utilization.

The Pathologically Evolving Aggregation-State of Cells in Cancerous Tissues as Interpreted by Fractal and Multi-Fractal Dispersion Theory in Saturated Porous Formations

Pannone M.
2024-01-01

Abstract

: A recent author's fractal fluid-dynamic dispersion theory in porous media has focused on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic constant) component of a properly normalized version of these coefficients exhibits a clearly detectable minimum in correspondence with the same fractal dimension (d ≅ 1.7) that seems to characterize the diffusion-limited aggregation state of cells in advanced stages of cancerous lesion progression. That circumstance suggests that such a critical fractal dimension, which is also reminiscent of the colloidal state of solutions (and may therefore identify the microscale architecture of both living and non-living two-phase systems in state transition conditions) may actually represent a sort of universal nature imprint. Additionally, it suggests that the closed-form analytical solution that was provided for the effective macrodispersion coefficients in fractal porous media may be a reliable candidate as a physically-based descriptor of blood perfusion dynamics in healthy as well as cancerous tissues. In order to evaluate the biological meaningfulness of this specific fluid-dynamic parameter, a preliminary validation is performed by comparison with the results of imaging-based clinical surveys. Moreover, a multifractal extension of the theory is proposed and discussed in view of a perspective interpretative diagnostic utilization.
2024
File in questo prodotto:
File Dimensione Formato  
bioengineering-11-00469-v2.pdf

accesso aperto

Descrizione: file articolo pubblicato
Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 7.05 MB
Formato Adobe PDF
7.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/192275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact