Let 𝐹 be a field of characteristic zero and 𝐺 a finite abelian group. In this paper, we prove that an affine variety of 𝐺-graded PI-algebras is minimal if and only if it is generated by a graded algebra 𝑈𝑇(𝐴1,…,𝐴𝑚; 𝛾) of upper block triangular matrices where 𝐴1,…,𝐴𝑚 are finite-dimensional 𝐺-simple algebras.
Minimal varieties of graded PI‐algebras over abelian groups
Argenti, Sebastiano
;Di Vincenzo, Onofrio Mario
2024-01-01
Abstract
Let 𝐹 be a field of characteristic zero and 𝐺 a finite abelian group. In this paper, we prove that an affine variety of 𝐺-graded PI-algebras is minimal if and only if it is generated by a graded algebra 𝑈𝑇(𝐴1,…,𝐴𝑚; 𝛾) of upper block triangular matrices where 𝐴1,…,𝐴𝑚 are finite-dimensional 𝐺-simple algebras.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bulletin of London Math Soc - 2024 - Argenti - Minimal varieties of graded PI‐algebras over abelian groups.pdf
solo utenti autorizzati
Tipologia:
Pdf editoriale
Licenza:
Versione editoriale
Dimensione
237.8 kB
Formato
Adobe PDF
|
237.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.