Let 𝐹 be a field of characteristic zero and 𝐺 a finite abelian group. In this paper, we prove that an affine variety of 𝐺-graded PI-algebras is minimal if and only if it is generated by a graded algebra 𝑈𝑇(𝐴1,…,𝐴𝑚; 𝛾) of upper block triangular matrices where 𝐴1,…,𝐴𝑚 are finite-dimensional 𝐺-simple algebras.

Minimal varieties of graded PI‐algebras over abelian groups

Argenti, Sebastiano
;
Di Vincenzo, Onofrio Mario
2024-01-01

Abstract

Let 𝐹 be a field of characteristic zero and 𝐺 a finite abelian group. In this paper, we prove that an affine variety of 𝐺-graded PI-algebras is minimal if and only if it is generated by a graded algebra 𝑈𝑇(𝐴1,…,𝐴𝑚; 𝛾) of upper block triangular matrices where 𝐴1,…,𝐴𝑚 are finite-dimensional 𝐺-simple algebras.
2024
File in questo prodotto:
File Dimensione Formato  
Bulletin of London Math Soc - 2024 - Argenti - Minimal varieties of graded PI‐algebras over abelian groups.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 237.8 kB
Formato Adobe PDF
237.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/192155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact