Wood encodes environmental information that can be recovered through the study of tree-ring width and wood anatomical variables such as lumen area or cell-wall thickness. Anatomical variables often provide a stronger hydroclimate signal than tree-ring width, but they show a low tree-to-tree coherence. We investigate the sources of variation in tree-ring width, lumen area, and cell-wall thickness in three pine species inhabiting sites with contrasting climate conditions: Pinus lumholtzii in wet-summer northern Mexico, and Pinus halepensis and Pinus sylvestris in dry-summer north-eastern Spain. We quantified the amount of variance of these three variables explained by spring and summer water balance and how it varied among trees. Wood anatomical variables accounted for a larger inter-individual variability than tree-ring width data. Anatomical traits responded to hydroclimate more individualistically than tree-ring width. This individualistic response represents an important issue in long-term studies on wood anatomical characteristics. We emphasized the degree of variation among individuals of the same population, which has far-reaching implications for understanding tree species’ responses to climate change. Dendroclimatic and wood anatomical studies should focus on trees rather than on the mean population series.
Wood Anatomical Traits Respond to Climate but More Individualistically as Compared to Radial Growth: Analyze Trees, Not Means
Rita, Angelo;Colangelo, Michele;
2022-01-01
Abstract
Wood encodes environmental information that can be recovered through the study of tree-ring width and wood anatomical variables such as lumen area or cell-wall thickness. Anatomical variables often provide a stronger hydroclimate signal than tree-ring width, but they show a low tree-to-tree coherence. We investigate the sources of variation in tree-ring width, lumen area, and cell-wall thickness in three pine species inhabiting sites with contrasting climate conditions: Pinus lumholtzii in wet-summer northern Mexico, and Pinus halepensis and Pinus sylvestris in dry-summer north-eastern Spain. We quantified the amount of variance of these three variables explained by spring and summer water balance and how it varied among trees. Wood anatomical variables accounted for a larger inter-individual variability than tree-ring width data. Anatomical traits responded to hydroclimate more individualistically than tree-ring width. This individualistic response represents an important issue in long-term studies on wood anatomical characteristics. We emphasized the degree of variation among individuals of the same population, which has far-reaching implications for understanding tree species’ responses to climate change. Dendroclimatic and wood anatomical studies should focus on trees rather than on the mean population series.File | Dimensione | Formato | |
---|---|---|---|
2022_Rita et al.Forests.pdf
accesso aperto
Tipologia:
Pdf editoriale
Licenza:
Non definito
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.